Complutense University Library

The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic

Cembranos Diaz, Pilar and Mendoza Casas, José (2010) The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic. Journal of Mathematical Analysis and Applications, 367 (2). pp. 461-463. ISSN 0022-247X

[img] PDF
Restricted to Repository staff only until 2020.

117kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0022247X1000096X

View download statistics for this eprint

==>>> Export to other formats

Abstract

The statement of the title is proved. It follows from this that the spaces c(0)(l(p)), l(p)(c(0)) and l(p)(l(q)), 1 <= p, q <= +infinity, make a family of mutually non-isomorphic Banach spaces.

Item Type:Article
Uncontrolled Keywords:Banach Spaces; Isomorphism; Sequence Spaces;Mathematics, Applied; Mathematics
Subjects:Sciences > Mathematics > Numerical analysis
ID Code:14897
References:

1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006.

[2] C. Bessaga, A. Pełczyn´ ski, Some remarks on conjugate spaces containing subspaces isomorphic to the space c0, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr.

Phys. 6 (1958) 249–250.

[3] P. Cembranos, J. Mendoza, On the mutually non-isomorphic p(q) spaces, in press.

[4] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984.

[5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb., vol. 92, Springer-Verlag, 1977.

[6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978; first ed., North-Holland

Publishing, Amsterdam/New York, 1978; second ed., Johann Ambrosius Barth, Heidelberg, 1995.

Deposited On:19 Apr 2012 09:12
Last Modified:06 Feb 2014 10:11

Repository Staff Only: item control page