Biblioteca de la Universidad Complutense de Madrid

The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic

Impacto

Cembranos, Pilar y Mendoza Casas, José (2010) The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic. Journal of Mathematical Analysis and Applications, 367 (2). pp. 461-463. ISSN 0022-247X

[img]
Vista previa
PDF
117kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022247X1000096X



Resumen

The statement of the title is proved. It follows from this that the spaces c(0)(l(p)), l(p)(c(0)) and l(p)(l(q)), 1 <= p, q <= +infinity, make a family of mutually non-isomorphic Banach spaces.


Tipo de documento:Artículo
Palabras clave:Banach Spaces; Isomorphism; Sequence Spaces;Mathematics, Applied; Mathematics
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:14897
Referencias:

1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006.

[2] C. Bessaga, A. Pełczyn´ ski, Some remarks on conjugate spaces containing subspaces isomorphic to the space c0, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr.

Phys. 6 (1958) 249–250.

[3] P. Cembranos, J. Mendoza, On the mutually non-isomorphic p(q) spaces, in press.

[4] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984.

[5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb., vol. 92, Springer-Verlag, 1977.

[6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978; first ed., North-Holland

Publishing, Amsterdam/New York, 1978; second ed., Johann Ambrosius Barth, Heidelberg, 1995.

Depositado:19 Abr 2012 09:12
Última Modificación:03 Mar 2016 14:53

Sólo personal del repositorio: página de control del artículo