Biblioteca de la Universidad Complutense de Madrid

Equivalence of K- and J-methods for limiting real interpolation spaces


Cobos, Fernando y Kuehn, Thomas (2011) Equivalence of K- and J-methods for limiting real interpolation spaces. Journal of Functional Analysis , 261 (12). pp. 3696-3722. ISSN 0022-1236

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


We consider limiting real interpolation spaces defined by using powers of iterated logarithms and show
their description by means of the J -functional. Our results allow to complement some estimates on approximation
of stochastic integrals.

Tipo de documento:Artículo
Palabras clave:Limiting interpolation spaces; J-functional; K-functional; Lorentz-Zygmund spaces; Besov spaces; Logarithmic Functors; Function Parameter; Reiteration; Mathematics
Materias:Ciencias > Matemáticas > Estadística matemática
Código ID:14898

[1] I. Ahmed, D.E. Edmunds, W.D. Evans, G.E. Karadzhov, Reiteration theorems for the K-interpolation method in

limiting cases, Math. Nachr. 284 (2011) 421–442.

[2] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, C0-Groups, Commutator Methods and Spectral Theory of NBody

Hamiltonians, Progr. Math., vol. 135, Birkhäuser, Basel, 1996.

[3] C. Bennett, K. Rudnick, On Lorentz–Zygmund spaces, Dissertationes Math. 175 (1980) 1–67.

[4] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.[5] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.

[6] Yu.A. Brudny˘ı, N.Ya. Krugljak, Interpolation Functors and Interpolation Spaces, vol. 1, North-Holland, Amsterdam,


[7] P.L. Butzer, H. Berens, Semi-Groups of Operators and Approximation, Springer, New York, 1967.

[8] F. Cobos, D.L. Fernandez, Hardy–Sobolev spaces and Besov spaces with a function parameter, in: Function Spaces

and Applications, in: Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 158–170.

[9] F. Cobos, L.M. Fernández-Cabrera, T. Kühn, T. Ullrich, On an extreme class of real interpolation spaces, J. Funct.

Anal. 256 (2009) 2321–2366.

[10] F. Cobos, L.M. Fernández-Cabrera, M. Mastyło, Abstract limit J -spaces, J. London Math. Soc. (2) 82 (2010) 501–


[11] F. Cobos, T. Kühn, Approximation and entropy numbers in Besov spaces of generalized smoothness, J. Approx.

Theory 160 (2009) 56–70.

[12] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

[13] R.Ya. Doktorskii, Reiteration relations of the real interpolation method, Soviet Math. Dokl. 44 (1992) 665–669.

[14] D.E. Edmunds, W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin, 2004.

[15] W.D. Evans, B. Opic, Real interpolation with logarithmic functors and reiteration, Canad. J. Math. 52 (2000) 920–


[16] W.D. Evans, B. Opic, L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002) 187–


[17] P. Fernández-Martínez, T. Signes, Real interpolation with symmetric spaces and slowly varying functions, Q. J.

Math. (2010), doi:10.1093/qmath/haq009, in press.

[18] S. Geiss, Private communication, September 2009.

[19] C. Geiss, S. Geiss, On approximation of a class of stochastic integrals and interpolation, Stoch. Stoch. Rep. 76

(2004) 339–362.

[20] S. Geiss, M. Hujo, Interpolation and approximation in L2(γ ), J. Approx. Theory 144 (2007) 213–232.

[21] A. Gogatishvili, B. Opic,W. Trebels, Limiting reiteration for real interpolation with slowly varying functions,Math.

Nachr. 278 (2005) 86–107.

[22] M.E. Gomez, M. Milman, Extrapolation spaces and almost-everywhere convergence of singular integrals, J. London

Math. Soc. 34 (1986) 305–316.

[23] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978)


[24] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981) 50–73.

[25] M. Milman, Extrapolation and Optimal Decompositions, Lecture Notes in Math., vol. 1580, Springer, Berlin,


[26] B. Opic, L. Pick, On generalized Lorentz–Zygmund spaces, Math. Inequal. Appl. 2 (1999) 391–467.

[27] J. Peetre, A Theory of Interpolation of Normed Spaces, Notas Mat., vol. 39, Inst. Mat. Pura Apl., Rio de Janeiro,

1968.[28] L.-E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986) 199–222.

[29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[30] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.

[31] H. Triebel, The Structure of Functions, Birkhäuser, Basel, 2001.

[32] H. Triebel, Theory of Function Spaces III, Birkhäuser, Basel, 2006.

Depositado:19 Abr 2012 09:13
Última Modificación:06 Feb 2014 10:11

Sólo personal del repositorio: página de control del artículo