Biblioteca de la Universidad Complutense de Madrid

Toy nanoindentation model and incipient plasticity


Plans, I. y Carpio, Ana y Bonilla, L.L. (2009) Toy nanoindentation model and incipient plasticity. Chaos, Solitons and Fractals, 42 (3). pp. 1623-1630. ISSN 0960-0779

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


A toy model of two dimensional nanoindentation in finite crystals is proposed. The crystal is described by periodized discrete elasticity whereas the indenter is a rigid strain field of triangular shape representing a hard knife-like indenter. Analysis of the model shows that there are a number of discontinuities in the load vs penetration depth plot which correspond to the creation of dislocation loops. The stress vs depth bifurcation diagram of the model reveals multistable stationary solutions that appear as the dislocation-free branch of solutions develops turning points for increasing stress. Dynamical simulations show that an increment of the applied load leads to nucleation of dislocation loops below the nanoindenter tip. Such dislocations travel inside the bulk of the crystal and accommodate at a certain depth in the sample. In agreement with experiments, hysteresis is observed if the stress is decreased after the first dislocation loop is created. Critical stress values for loop creation and their final location at equilibrium are calculated.

Tipo de documento:Artículo
Palabras clave:Dislocation nucleation; Fricton; Detachment; Fracture; Crystals
Materias:Ciencias > Física > Física de materiales
Código ID:14901

[1] Landau LD, Lifshitz EM. Fluid mechanics. 2nd ed. New York: Pergamon; 1987.

[2] Amit DJ, Martı´n Mayor V. Field theory, the renormalization group and critical phenomena. 3rd. rev. ed. Singapore: World Sci.; 2005.

[3] Hull D, Bacon DJ. Introduction to dislocations. 4th ed. Oxford UK: Butterworth-Heinemann; 2001.

[4] Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York: John Wiley and Sons; 1982.

[5] Slepyan LI. Models and phenomena in fracture mechanics. Berlin: Springer; 2002.

[6] Pla O, Guinea F, Louis E, Ghaisas SV, Sander LM. Straight cracks in dynamic brittle fracture. Phys Rev B 2000;61:11472–86.

[7] Zhen Y, Vainchtein A. Dynamics of steps along a martensitic phase boundary I: semi-analytical solution. J Mech Phys Solids 2008;56:496–520.

[8] Rubinstein SM, Cohen G, Fineberg J. Detachment fronts and the onset of dynamic friction. Nature 2004;430(7003):1005–9.

[9] Marder M. Friction – terms of detachment. Nat Mater 2004;3(9):583–4.

[10] Gerde E, Marder M. Friction and fracture. Nature 2001;413(6853):285–8.

[11] Kessler DA. Surface physics – a new crack at friction. Nature 2001;413(6853):260–1.

[12] Carpio A, Bonilla LL. Edge dislocations in crystal structures considered as traveling waves in discrete models. Phys Rev Lett 2003;90:135502.

[13] Carpio A, Bonilla LL. Discrete models of dislocations and their motion in cubic crystals. Phys Rev B 2005;71(13):134105.

[14] Carpio A, Bonilla LL, de Juan F, Vozmediano MAH. Dislocations in graphene. New J Phys 2008;10:053021.

[15] Carpio A, Bonilla LL. Periodized discrete elasticity models for defects in graphene. Phys Rev B 2008;78(8):085406.

[16] Plans I, Carpio A, Bonilla LL. Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model. Europhys Lett


[17] Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B 2006;73(24):245410.

[18] Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals.

Nat Mater 2008;7(2):115–9.

[19] Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H, Leipner HS. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys

Rev B 2003;67(17):172101.

[20] Asenjo A, Jaafar M, Carrasco E, Rojo JM. Dislocation mechanisms in the first stage of plasticity of nanoindented Au(111) surfaces. Phys Rev B


[21] de la Fuente OR, Zimmerman JA, González MA, de la Figuera J, Hamilton JC, Pai WW, et al. Dislocation emission around nanoindentations on a (001) fcc

metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys Rev Lett 2002;88(3):036101.

[22] Navarro V, de la Fuente OR, Mascaraque A, Rojo JM. Uncommon dislocation processes at the incipient plasticity of stepped gold surfaces. Phys Rev Lett


[23] Schall P, Cohen I, Weitz DA, Spaepen F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 2006;440(7082):319–23.

[24] Bulatov VV, Cai W. Computer simulations of dislocations. Oxford, UK: Oxford University Press; 2006.

[25] Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B 1998;58(17):11085–8.

[26] Zhu T, Li J, Van Vliet KJ, Ogata S, Yip S, Suresh S. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J

Mech Phys Solids 2004;52(3):691–724.

[27] Doedel EJ, Paffenroth RC, Champneys AR, Fairgrieve TF, Kuznetsov YA, Oldeman BE, Sandstede B, Wang X. AUTO2000: continuation and bifurcation

software for ordinary differential equations (with HomCont). Technical Report, Concordia University; 2002. Available from:


[28] Iooss G, Joseph DD. Elementary stability and bifurcation theory. New York: Springer; 1980.

[29] Landau AI. Application of a model of interacting atomic chains for the description of edge dislocations. Phys Status Solidi B 1994;183(2):407–17.

[30] Cui JP, Hao YL, Li SJ, Sui ML, Li DX, Yang R. Reversible movement of homogenously nucleated dislocations in a beta-titanium alloy. Phys Rev Lett


Depositado:19 Abr 2012 09:19
Última Modificación:28 Oct 2016 08:32

Sólo personal del repositorio: página de control del artículo