Biblioteca de la Universidad Complutense de Madrid

Explosive behavior in spatially discrete reaction-diffusion systems


Carpio, Ana y Duro, Gema (2009) Explosive behavior in spatially discrete reaction-diffusion systems. Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 12 (4). pp. 693-711. ISSN 1531-3492

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


Explosive instabilities in spatially discrete reaction-diffusion systems are studied. We identify classes of initial data developing singularities in finite time and obtain predictions of the blow-up times, whose accuracy is checked by comparison with numerical solutions. We present averaged and local blow-up estimates. Local blow-up results show that it is possible to have blow-up after blow-up. Conditions excluding or implying blow-up at space infinity are discussed.

Tipo de documento:Artículo
Palabras clave:Instability, blow-up, reaction-diffusion systems, spatial discreteness, nonlinear oscillators.
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:14905

[1] N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov and A. A. Samarskii, Localization of thermonuclear combustion in a plasma with electronic thermal conductivity, JETP Lett., 26 (1977), 469–472.

[2] J. D. Buckmaster and G. S. S. Ludford, “Lectures on Mathematical Combustion,” SIAM, PA 1983.

[3] A. Kapila, Reactive-diffusive system with Arrhenius kinetics: Dynamics of ignition, SIAM J. Appl. Math., 39 (1980), 21–36.

[4] D. Estep, S. Verduyn and R. Williams, Analysis of shear layers in a fluid with temperature-dependent viscosity, J. Comp. Phys., 173 (2001), 17–60.

[5] M. A. Herrero and J. J. L Vel´azquez, Chemotactic collapse of the Keller-Segel model, J. Math. Biol., 35 (1996), 177–194.

[6] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pur. Appl. Math, 38 (1985), 297–319.

[7] S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Commum. Pure Appl. Math., 16 (1963), 305–330.

[8] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math., 28 (1977), 473–486.

[9] H. Levine, Some nonexistence and instability theorems for formally parabolic equations of the form Put = −Au + F(u), Arch. Rat. Mech. Anal., 51 (1973), 371–386.

[10] D. Estep, M. Lerson and R.Williams, Estimating the error of numerical solutions of nonlinear reaction-diffusion equations, Mem. Am. Math. Soc., 696 (2000), 1–109.

[11] C. J. Budd, W. Huang and R. D. Russel, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comp., 17 (1996), 305–327.

[12] C. Bandle and H. Brunner, Blow up in diffusion equations: A survey, J. Comput. Appl. Math., 97 (1998), 3–22.

[13] C. T. Klein and B. Mayer, A model for pattern formation in gap-junction coupled cells, J. Theor. Biol., 186 (1997), 107–115.

[14] J. Dallon and H. Othmer, A discrete cell model with adaptative signaling for aggregation of Dictyostelium discoideum, Phil. Trans. Roy. Soc. London, 352 (1997), 391–418.

[15] P. L. Christiansen, O. Bang, S. Pagano and G. Vitello, The lifetime of coherent excitations in continuous and discrete models of Scheibe aggregates, Nanobiology, 1(1992), 229–237.

[16] R. Becker and W. Doring, The kinetic treatment of nuclear formation in supersaturated vapors, Ann. Phys, 104 (1935), 719–752.

[17] J. W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Metallurgica, 8 (1960), 554–562.

[18] L. L. Bonilla, Theory of nonlinear charge transport, wave propagation and self-oscillations in semiconductor superlattices, J. Phys. Condens. Matter, 14 (2002), R341–R381.

[19] T. Nakagawa, Blowing up of a finite difference solution to ut = uxx+u2, Appl. Math. Optim.,2 (1976), 337–350.

[20] Y. G. Chen, Asymptotic behaviour of blowing-up solutions for finite difference analogues of ut = uxx + u1+, J. Fac. Sci. Univ. Tokyo, Sect IA Math., 33 (1986), 541–575.

[21] L. M. Abia, J. C. L´opez-Marcos and J. Mart´ınez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Num. Math., 26 (1998), 399–414.

[22] W. Walter, “Differential and Integral Inequalities,” Springer-Verlag, Berlin, 1979.

[23] D. Hankerson and B. Zinner, Wavefronts for a cooperative tridiagonal system of differential equations, J. Dyn. Diff., 5 (1993), 359–373.

[24] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J App. Math., 47 (1987), 556–572.

[25] T. M. Flett, “Differential Analysis,” Cambridge University Press, 1980.

[26] G. Fath, Propagation failure of traveling waves in a discrete bistable medium, Physica D, 116(1998), 176–190.

[27] M. Abramovich and I. A. Stegun, “Handbook of Mathematical Functions,” Dover, 1970.

[28] A. Carpio, Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators, Phys. Rev. E, 69 (2004), 046601.

[29] Y. Giga and R. V. Kohn, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pur. Appl. Math., 42 (1989), 845–884.

[30] Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Annal. Appl., 316 (2006), 538–555.

Depositado:19 Abr 2012 09:28
Última Modificación:28 Oct 2016 08:06

Sólo personal del repositorio: página de control del artículo