Biblioteca de la Universidad Complutense de Madrid

Reiteration formulae for interpolation methods associated to polygons


Cobos, Fernando y Richter, Christian y Ullrich, Tino (2009) Reiteration formulae for interpolation methods associated to polygons. Journal of Mathematical Analysis and Applications, 352 (2). pp. 773-787. ISSN 0022-247X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


We study spaces generated by applying the interpolation methods defined by a polygon Π
to an N-tuple of real interpolation spaces with respect to a fixed Banach couple {X, Y }. We
show that if the interior point (α,β) of the polygon does not lie in any diagonal of Π then
the interpolation spaces coincide with sums and intersections of real interpolation spaces
generated by {X, Y }. Applications are given to N-tuples formed by Lorentz function spaces
and Besov spaces. Moreover, we show that results fail in general if (α,β) is in a diagonal.

Tipo de documento:Artículo
Palabras clave:Banach-Spaces; Compact-Operators; Duality; Interpolation methods associated to polygons; Reiteration; Lorentz function spaces; Besov spaces; Mathematics, Applied; Mathematics
Materias:Ciencias > Matemáticas > Topología
Código ID:14927

[1] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progr. Math., vol. 135, Birkhäuser, Basel, 1996.

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

[3] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.

[4] Yu.A. Brudny˘ı, N.Ya. Krugljak, Interpolation Functors and Interpolation Spaces, vol. 1, North-Holland, Amsterdam, 1991.

[5] P.L. Butzer, H. Berens, Semi-Groups of Operators and Approximation, Springer, New York, 1967.

[6] F. Cobos, L.M. Fernández-Cabrera, T. Kühn, T. Ullrich, On an extreme class of real interpolation spaces, Universidad Complutense de Madrid, 2008, preprint.

[7] F. Cobos, L.M. Fernández-Cabrera, J. Martín, Some reiteration results for interpolation methods defined by means of polygons, Proc. Roy. Soc. Edinburgh Sect. A 13(2008) 1179–1195.

[8] F. Cobos, P. Fernández-Martínez, A duality theorem for interpolation methods associated to polygons, Proc. Amer. Math. Soc. 121 (1994) 1093–1101.

[9] F. Cobos, P. Fernández-Martínez, A. Martínez, On reiteration and the behaviour of weak compactness under certain interpolation methods, Collect. Math. 50 (1999) 53–72.

[10] F. Cobos, P. Fernández-Martínez, A. Martínez, Y. Raynaud, On duality between K- and J -spaces, Proc. Edinb. Math. Soc. 42 (1999) 43–63.

[11] F. Cobos, P. Fernández-Martínez, T. Schonbek, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory 80 (1995)321–351.

[12] F. Cobos, T. Kühn, T. Schonbek, One-sided compactness results for Aronszajn–Gagliardo functors, J. Funct. Anal. 106 (1992) 274–313.

[13] F. Cobos, J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991) 371–400.

[14] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

[15] D.E. Edmunds, W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin, 2004.

[16] S. Ericsson, Certain reiteration and equivalence results for the Cobos–Peetre polygon interpolation method, Math. Scand. 85 (1999) 301–319.

[17] A. Favini, Su una estensione del metodo d’interpolazione complesso, Rend. Sem. Mat. Univ. Padova 47(1972) 243–298.

[18] D.L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 65 (1979) 175–201.

[19] L.M. Fernández-Cabrera, A. Martínez, Interpolation methods defined by means of polygons and compact operators, Proc. Edinb. Math. Soc. 50 (2007) 653–671.

[20] C. Foias¸ , J.-L. Lions, Sur certains théorèmes d’interpolation, Acta Sci. Math. (Szeged) 22 (1961) 269–282.

[21] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978) 289-305.

[22] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981) 50–73.

[23] G. Sparr, Interpolation of several Banach spaces, Ann. Math. Pura Appl. 99 (1974) 247–316.

[24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[25] H. Triebel, Theory of Function Spaces III, Birkhäuser, Basel, 2006.

[26] A. Yoshikawa, Sur la théorie d’espaces d’interpolation – les espaces de moyenne de plusieurs espaces de Banach, J. Fac. Sci. Univ. Tokyo 16 (1970)407–468.

[27] A.C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

Depositado:20 Abr 2012 11:04
Última Modificación:06 Feb 2014 10:12

Sólo personal del repositorio: página de control del artículo