Complutense University Library

Reiteration formulae for interpolation methods associated to polygons


Cobos, Fernando and Richter, Christian and Ullrich, Tino (2009) Reiteration formulae for interpolation methods associated to polygons. Journal of Mathematical Analysis and Applications, 352 (2). pp. 773-787. ISSN 0022-247X

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


We study spaces generated by applying the interpolation methods defined by a polygon Π
to an N-tuple of real interpolation spaces with respect to a fixed Banach couple {X, Y }. We
show that if the interior point (α,β) of the polygon does not lie in any diagonal of Π then
the interpolation spaces coincide with sums and intersections of real interpolation spaces
generated by {X, Y }. Applications are given to N-tuples formed by Lorentz function spaces
and Besov spaces. Moreover, we show that results fail in general if (α,β) is in a diagonal.

Item Type:Article
Uncontrolled Keywords:Banach-Spaces; Compact-Operators; Duality; Interpolation methods associated to polygons; Reiteration; Lorentz function spaces; Besov spaces; Mathematics, Applied; Mathematics
Subjects:Sciences > Mathematics > Topology
ID Code:14927

[1] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Progr. Math., vol. 135, Birkhäuser, Basel, 1996.

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

[3] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.

[4] Yu.A. Brudny˘ı, N.Ya. Krugljak, Interpolation Functors and Interpolation Spaces, vol. 1, North-Holland, Amsterdam, 1991.

[5] P.L. Butzer, H. Berens, Semi-Groups of Operators and Approximation, Springer, New York, 1967.

[6] F. Cobos, L.M. Fernández-Cabrera, T. Kühn, T. Ullrich, On an extreme class of real interpolation spaces, Universidad Complutense de Madrid, 2008, preprint.

[7] F. Cobos, L.M. Fernández-Cabrera, J. Martín, Some reiteration results for interpolation methods defined by means of polygons, Proc. Roy. Soc. Edinburgh Sect. A 13(2008) 1179–1195.

[8] F. Cobos, P. Fernández-Martínez, A duality theorem for interpolation methods associated to polygons, Proc. Amer. Math. Soc. 121 (1994) 1093–1101.

[9] F. Cobos, P. Fernández-Martínez, A. Martínez, On reiteration and the behaviour of weak compactness under certain interpolation methods, Collect. Math. 50 (1999) 53–72.

[10] F. Cobos, P. Fernández-Martínez, A. Martínez, Y. Raynaud, On duality between K- and J -spaces, Proc. Edinb. Math. Soc. 42 (1999) 43–63.

[11] F. Cobos, P. Fernández-Martínez, T. Schonbek, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory 80 (1995)321–351.

[12] F. Cobos, T. Kühn, T. Schonbek, One-sided compactness results for Aronszajn–Gagliardo functors, J. Funct. Anal. 106 (1992) 274–313.

[13] F. Cobos, J. Peetre, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991) 371–400.

[14] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

[15] D.E. Edmunds, W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin, 2004.

[16] S. Ericsson, Certain reiteration and equivalence results for the Cobos–Peetre polygon interpolation method, Math. Scand. 85 (1999) 301–319.

[17] A. Favini, Su una estensione del metodo d’interpolazione complesso, Rend. Sem. Mat. Univ. Padova 47(1972) 243–298.

[18] D.L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 65 (1979) 175–201.

[19] L.M. Fernández-Cabrera, A. Martínez, Interpolation methods defined by means of polygons and compact operators, Proc. Edinb. Math. Soc. 50 (2007) 653–671.

[20] C. Foias¸ , J.-L. Lions, Sur certains théorèmes d’interpolation, Acta Sci. Math. (Szeged) 22 (1961) 269–282.

[21] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978) 289-305.

[22] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981) 50–73.

[23] G. Sparr, Interpolation of several Banach spaces, Ann. Math. Pura Appl. 99 (1974) 247–316.

[24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[25] H. Triebel, Theory of Function Spaces III, Birkhäuser, Basel, 2006.

[26] A. Yoshikawa, Sur la théorie d’espaces d’interpolation – les espaces de moyenne de plusieurs espaces de Banach, J. Fac. Sci. Univ. Tokyo 16 (1970)407–468.

[27] A.C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

Deposited On:20 Apr 2012 11:04
Last Modified:06 Feb 2014 10:12

Repository Staff Only: item control page