Biblioteca de la Universidad Complutense de Madrid

Periodized discrete elasticity models for defects in graphene

Impacto

Carpio, Ana y Bonilla, L.L. (2008) Periodized discrete elasticity models for defects in graphene. Physical review B, 78 (8). ISSN 1098-0121

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

424kB

URL Oficial: http://arxiv.org/pdf/0805.1220.pdf




Resumen

The cores of edge dislocations, edge dislocation dipoles, and edge dislocation loops in planar graphene have been studied by means of periodized discrete elasticity models. To build these models, we have found a way to discretize linear elasticity on a planar hexagonal lattice using combinations of difference operators that do not symmetrically involve all the neighbors of an atom. At zero temperature, dynamically stable cores of edge dislocations may be heptagon-pentagon pairs (glide dislocations) or octagons (shuffle dislocations) depending on the choice of initial configuration. Possible cores of edge dislocation dipoles are vacancies, pentagon-octagon-pentagon divacancies, Stone-Wales defects, and 7-5-5-7 defects. While symmetric vacancies, divacancies, and 7-5-5-7 defects are dynamically stable, asymmetric vacancies and 5-7-7-5 Stone-Wales defects seem to be unstable.


Tipo de documento:Artículo
Palabras clave:Carbon nanotubes; Graphite; Dislocations; Crystals
Materias:Ciencias > Física > Física del estado sólido
Código ID:14933
Referencias:

1 K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

2 J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth and S. Roth, Nature 446, 60 (2007).

3 K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

4 A.K. Geim and K.S. Novoselov, Nature Materials 6, 183(2007).

5 Y. Ma, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, New J. Phys. 6, 68 (2004).

6 N.M.R. Peres, F. Guinea and A.H. Castro-Neto, Phys. Rev. B 73, 125411 (2006); N. M. R. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos, J. M. B. Lopes dos Santos and A. H. Castro Neto, Europhys. Lett.80, 67007 (2007).

7 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, arXiv:0709.1163, to appear in Rev. Mod. Phys.

8 A. Cortijo and M.A.H. Vozmediano, Nucl. Phys. B 763, 293 (2007).

9 A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, Nature 430, 870 (2004).

10 J. Coraux, A. T. N’Diaye, C. Busse and T. Michely, Nano Lett. 8, 565 (2008).

11 C.P. Ewels, M.I. Heggie and P.R. Briddon, Chem. Phys. Lett. 351, 178 (2002).

Depositado:20 Abr 2012 11:31
Última Modificación:28 Oct 2016 08:27

Sólo personal del repositorio: página de control del artículo