Complutense University Library

Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model

Plans, I. and Carpio Rodríguez, Ana María and Bonilla , L.L. (2008) Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model. Epl, 81 (3). 36001-p1. ISSN 0295-5075

[img] PDF
Restricted to Repository staff only until 2020.

660kB

Official URL: http://iopscience.iop.org/0295-5075/81/3/36001

View download statistics for this eprint

==>>> Export to other formats

Abstract

A novel analysis of homogeneous nucleation of dislocations in sheared two-dimensional
crystals described by periodized-discrete-elasticity models is presented. When the crystal is
sheared beyond a critical strain F = Fc, the strained dislocation-free state becomes unstable
via a subcritical pitchfork bifurcation. Selecting a fixed final applied strain Ff >Fc, different
simultaneously stable stationary configurations containing two or four edge dislocations may be
reached by setting F = Ff t/tr during different time intervals tr. At a characteristic time after tr,
one or two dipoles are nucleated, split, and the resulting two edge dislocations move in opposite
directions to the sample boundary. Numerical continuation shows how configurations with different
numbers of edge dislocation pairs emerge as bifurcations from the dislocation-free state.

Item Type:Article
Uncontrolled Keywords:Crystals; Nanoindentation; Copper
Subjects:Sciences > Physics > Materials
ID Code:14943
References:

[1] Asenjo A., Jaafar M., Carrasco E. and Rojo J. M.,

Phys. Rev. B, 73 (2006) 075431.

[2] Rodr´ıguez de la Fuente O., Zimmerman J. A.,

Gonz´alez M. A., de la Figuera J., Hamilton J. C.,

Pai W. W. and Rojo J. M., Phys. Rev. Lett., 88 (2002)

036101.

[3] Breen K. R., Uppal P. N. and Ahearn J. N., J. Vac.

Sci. Technol. B, 8 (1990) 730.

[4] Joyce B. A. and Vvedensky D. D., Mater. Sci. Eng.

R, 46 (2004) 127.

[5] Schall P., Cohen I., Weitz D. and Spaepen F.,

Nature, 440 (2006) 319.

[6] Gouldstone A., Van Vliet K. J. and Suresh S.,

Nature, 411 (2001) 656.

[7] Bulatov V. V. and Cai W., Computer Simulations

of Dislocations (Oxford University Press, Oxford, UK)

2006.

[8] Carpio A. and Bonilla L. L., Phys. Rev. B, 71 (2005)

134105.

[9] Bonilla L. L., Carpio A. and Plans I., Physica A, 376

(2007) 361.

[10] Carpio A. and Bonilla L. L., Phys. Rev. Lett., 90

(2003) 135502.

[11] Landau A. I., Phys. Status Solidi (b), 183 (1994) 407.

[12] Plans I., Discrete Models of Dislocations in Crystal

Lattices: Formulation, Analysis and Applications, PhD

Thesis (Universidad Carlos III de Madrid) 2007.

[13] Bonilla L. L., Escobedo R. and Dell’Acqua G.,

Phys. Rev. B, 73 (2006) 115341.

[14] Doedel E. J. et al., AUTO2000 (Caltech, Pasadena)

2001, https://sourceforge.net/projects/auto2000/.

[15] Lorenz D., Zeckzer A., Hilpert U., Grau P.,

Johansen H. and Leipner H. S., Phys. Rev. B, 67 (2003)

172101.

[16] Ogata S., Li J. and Yip S., Science, 298 (2002) 807.

[17] Hill R., J. Mech. Phys. Solids, 10 (1962) 1.

[18] Zhu T., Li J., Van Vliet K. J., Ogata S., Yip S.

and Suresh S., J. Mech. Phys. Solids, 52 (2004)

691.

[19] Li J., Van Vliet K. J., Zhu T., Yip S. and Suresh S.,

Nature, 418 (2002) 307.

Deposited On:20 Apr 2012 11:49
Last Modified:06 Feb 2014 10:12

Repository Staff Only: item control page