Biblioteca de la Universidad Complutense de Madrid

Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model

Impacto

Plans, I. y Carpio, Ana y Bonilla, L.L. (2008) Homogeneous nucleation of dislocations as bifurcations in a periodized discrete elasticity model. Epl, 81 (3). 36001-p1. ISSN 0295-5075

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

660kB

URL Oficial: http://iopscience.iop.org/0295-5075/81/3/36001




Resumen

A novel analysis of homogeneous nucleation of dislocations in sheared two-dimensionalcrystals described by periodized-discrete-elasticity models is presented. When the crystal issheared beyond a critical strain F = Fc, the strained dislocation-free state becomes unstable via a subcritical pitchfork bifurcation. Selecting a fixed final applied strain Ff >Fc, different simultaneously stable stationary configurations containing two or four edge dislocations may be reached by setting F = Ff t/tr during different time intervals tr. At a characteristic time after tr, one or two dipoles are nucleated, split, and the resulting two edge dislocations move in opposite directions to the sample boundary. Numerical continuation shows how configurations with different numbers of edge dislocation pairs emerge as bifurcations from the dislocation-free state.


Tipo de documento:Artículo
Palabras clave:Crystals; Nanoindentation; Copper
Materias:Ciencias > Física > Física de materiales
Código ID:14943
Referencias:

[1] Asenjo A., Jaafar M., Carrasco E. and Rojo J. M.,

Phys. Rev. B, 73 (2006) 075431.

[2] Rodr´ıguez de la Fuente O., Zimmerman J. A.,

Gonz´alez M. A., de la Figuera J., Hamilton J. C.,

Pai W. W. and Rojo J. M., Phys. Rev. Lett., 88 (2002)

036101.

[3] Breen K. R., Uppal P. N. and Ahearn J. N., J. Vac.

Sci. Technol. B, 8 (1990) 730.

[4] Joyce B. A. and Vvedensky D. D., Mater. Sci. Eng.

R, 46 (2004) 127.

[5] Schall P., Cohen I., Weitz D. and Spaepen F.,

Nature, 440 (2006) 319.

[6] Gouldstone A., Van Vliet K. J. and Suresh S.,

Nature, 411 (2001) 656.

[7] Bulatov V. V. and Cai W., Computer Simulations

of Dislocations (Oxford University Press, Oxford, UK)

2006.

[8] Carpio A. and Bonilla L. L., Phys. Rev. B, 71 (2005)

134105.

[9] Bonilla L. L., Carpio A. and Plans I., Physica A, 376

(2007) 361.

[10] Carpio A. and Bonilla L. L., Phys. Rev. Lett., 90

(2003) 135502.

[11] Landau A. I., Phys. Status Solidi (b), 183 (1994) 407.

[12] Plans I., Discrete Models of Dislocations in Crystal

Lattices: Formulation, Analysis and Applications, PhD

Thesis (Universidad Carlos III de Madrid) 2007.

[13] Bonilla L. L., Escobedo R. and Dell’Acqua G.,

Phys. Rev. B, 73 (2006) 115341.

[14] Doedel E. J. et al., AUTO2000 (Caltech, Pasadena)

2001, https://sourceforge.net/projects/auto2000/.

[15] Lorenz D., Zeckzer A., Hilpert U., Grau P.,

Johansen H. and Leipner H. S., Phys. Rev. B, 67 (2003)

172101.

[16] Ogata S., Li J. and Yip S., Science, 298 (2002) 807.

[17] Hill R., J. Mech. Phys. Solids, 10 (1962) 1.

[18] Zhu T., Li J., Van Vliet K. J., Ogata S., Yip S.

and Suresh S., J. Mech. Phys. Solids, 52 (2004)

691.

[19] Li J., Van Vliet K. J., Zhu T., Yip S. and Suresh S.,

Nature, 418 (2002) 307.

Depositado:20 Abr 2012 11:49
Última Modificación:28 Oct 2016 08:07

Sólo personal del repositorio: página de control del artículo