Complutense University Library

Asymptotic construction of pulses in the discrete Hodgkin-Huxley model for myelinated nerves

Carpio Rodríguez, Ana María (2005) Asymptotic construction of pulses in the discrete Hodgkin-Huxley model for myelinated nerves. Physical Review E, 72 (1). ISSN 1539-3755

[img] PDF
Restricted to Repository staff only until 2020.

405kB

Official URL: http://arxiv.org/pdf/q-bio.NC/0506005.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

A quantitative description of pulses and wave trains in the spatially discrete Hodgkin-Huxley model for myelinated nerves is given. Predictions of the shape and speed of the waves and the thresholds for propagation failure are obtained. Our asymptotic predictions agree quite well with numerical solutions of the model and describe wave patterns generated by repeated firing at a boundary.

Item Type:Article
Uncontrolled Keywords: Reaction-Diffusion Systems; Propagation Failure; Transmission Line; Coupled Systems; Fibers; Waves; Conduction; Impulse; Computation; Dynamics
Subjects:Medical sciences > Biology > Biomathematics
ID Code:14964
References:

[1] A.R.A. Anderson and B.D. Sleeman, Int. J. Bif. Chaos, 5, 63 (1995).

[2] A. Carpio, L.L. Bonilla, SIAM J. Appl. Math., 63 (2), 619, (2002).

[3] J.P. Keener, SIAM J. Appl. Math., 47, 556 (1987).

[4] G. F´ath, Physica D, 116, 176 (1998).

[5] A. Carpio, L.L. Bonilla, Phys. Rev. Lett, 86, 6034, (2001).

[6] J.J. Struijk, Biophys. J., 72, 2457 (1997).

[7] W.A.H. Rushton, J. Physiol., London, 115, 101 (1951).

[8] A. C. Scott, Rev. Modern Phys., 47, 487 (1975); A.C. Scott, Neuroscience, Springer, Berlin, 2002.

[9] S. Pluchino, A. Quattrini, E. Brambilla et al, Nature 422, 688 (2003).

[10] J.P. Keener, J. Sneyd, Mathematical Physiology, Springer, New York, 1998, Chapters 4 and 9.

[11] H. Kunov, Proc. IEEE, 55 (1967) 427-428.

[12] V. Booth, T. Erneux, SIAM J. Appl. Math., 55, 1372 (1995).

[13] X. Chen, S.P. Hastings, J. Math. Biol., 38, 1 (1999).

[14] A. Tonnelier, Phys. Rev. E, 67, 036105, (2003).

[15] I. Richer, IEEE Trans. Circuit Theory, CT-13, 388 (1996).

[16] B. Zinner, J. Diff. Eq., 96, 1 (1992).

[17] T. Erneux, G. Nicolis, Physica D, 67, 237 (1993).

[18] R. FitzHugh, Biophys. J., 2, 11 (1962).

[19] L. Goldman, J.S. Albus, Biophys. J., 8 596 (1968).

[20] J.W. Moore, R.W. Joyner, M.H. Brill, S.D. Waxman, M. Najar-Joa, Biophys. J., 21, 147, (1978).

[21] C.B. Muratov, Biophys. J., 79, 2893, (2000).

[22] R. FitzHugh, Biophys. J., 1, 445 (1961); J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. Inst. Radio Engineers, 50, 2061 (1962).

[23] P. A. Lagerstrom, Matched asymptotic expansions. Springer, N. Y. 1988.

[24] In fact, stages (3)-(5) can be considered as one region described by the reduced system of four ordinary differential equations obtained setting D = 0. The three regions arise by further reducing the system using the splitting between fast and slow variables.

[25] J.P. Keener, SIAM J. Appl. Math., 39, 528, (1980).

[26] S. Binczak, J.C. Eilbeck, A.C. Scott, Physica D, 148, 174 (2001).

[27] G.W. Beeler, H.J. Reuter, J. Physiol., 268, 177, (1977).

[28] L.L. Bonilla, H.T. Grahn, Rep. Prog. Phys., 68, 577-683, (2005).

[29] W.F. Pickard, J. Theoret. Biol., 11, 30, (1966).

[30] V.S. Markin, Yu. A. Chimadzhev, Biophys. J., 12, 1032, (1967).

[31] A.L. Hodgkin, A.F. Huxley, J. Physiol., London, 117, 500 (1952).

[32] K. S. Cole, Membranes, ions and impulses, Univ. Calif. Press, Berkeley, 1968.

Deposited On:24 Apr 2012 10:12
Last Modified:06 Feb 2014 10:13

Repository Staff Only: item control page