Biblioteca de la Universidad Complutense de Madrid

Asymptotic construction of pulses in the discrete Hodgkin-Huxley model for myelinated nerves

Impacto

Carpio, Ana (2005) Asymptotic construction of pulses in the discrete Hodgkin-Huxley model for myelinated nerves. Physical Review E, 72 (1). ISSN 1539-3755

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

405kB

URL Oficial: http://arxiv.org/pdf/q-bio.NC/0506005.pdf




Resumen

A quantitative description of pulses and wave trains in the spatially discrete Hodgkin-Huxley model for myelinated nerves is given. Predictions of the shape and speed of the waves and the thresholds for propagation failure are obtained. Our asymptotic predictions agree quite well with numerical solutions of the model and describe wave patterns generated by repeated firing at a boundary.


Tipo de documento:Artículo
Palabras clave: Reaction-Diffusion Systems; Propagation Failure; Transmission Line; Coupled Systems; Fibers; Waves; Conduction; Impulse; Computation; Dynamics
Materias:Ciencias Biomédicas > Biología > Biomatemáticas
Código ID:14964
Referencias:

[1] A.R.A. Anderson and B.D. Sleeman, Int. J. Bif. Chaos, 5, 63 (1995).

[2] A. Carpio, L.L. Bonilla, SIAM J. Appl. Math., 63 (2), 619, (2002).

[3] J.P. Keener, SIAM J. Appl. Math., 47, 556 (1987).

[4] G. F´ath, Physica D, 116, 176 (1998).

[5] A. Carpio, L.L. Bonilla, Phys. Rev. Lett, 86, 6034, (2001).

[6] J.J. Struijk, Biophys. J., 72, 2457 (1997).

[7] W.A.H. Rushton, J. Physiol., London, 115, 101 (1951).

[8] A. C. Scott, Rev. Modern Phys., 47, 487 (1975); A.C. Scott, Neuroscience, Springer, Berlin, 2002.

[9] S. Pluchino, A. Quattrini, E. Brambilla et al, Nature 422, 688 (2003).

[10] J.P. Keener, J. Sneyd, Mathematical Physiology, Springer, New York, 1998, Chapters 4 and 9.

[11] H. Kunov, Proc. IEEE, 55 (1967) 427-428.

[12] V. Booth, T. Erneux, SIAM J. Appl. Math., 55, 1372 (1995).

[13] X. Chen, S.P. Hastings, J. Math. Biol., 38, 1 (1999).

[14] A. Tonnelier, Phys. Rev. E, 67, 036105, (2003).

[15] I. Richer, IEEE Trans. Circuit Theory, CT-13, 388 (1996).

[16] B. Zinner, J. Diff. Eq., 96, 1 (1992).

[17] T. Erneux, G. Nicolis, Physica D, 67, 237 (1993).

[18] R. FitzHugh, Biophys. J., 2, 11 (1962).

[19] L. Goldman, J.S. Albus, Biophys. J., 8 596 (1968).

[20] J.W. Moore, R.W. Joyner, M.H. Brill, S.D. Waxman, M. Najar-Joa, Biophys. J., 21, 147, (1978).

[21] C.B. Muratov, Biophys. J., 79, 2893, (2000).

[22] R. FitzHugh, Biophys. J., 1, 445 (1961); J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. Inst. Radio Engineers, 50, 2061 (1962).

[23] P. A. Lagerstrom, Matched asymptotic expansions. Springer, N. Y. 1988.

[24] In fact, stages (3)-(5) can be considered as one region described by the reduced system of four ordinary differential equations obtained setting D = 0. The three regions arise by further reducing the system using the splitting between fast and slow variables.

[25] J.P. Keener, SIAM J. Appl. Math., 39, 528, (1980).

[26] S. Binczak, J.C. Eilbeck, A.C. Scott, Physica D, 148, 174 (2001).

[27] G.W. Beeler, H.J. Reuter, J. Physiol., 268, 177, (1977).

[28] L.L. Bonilla, H.T. Grahn, Rep. Prog. Phys., 68, 577-683, (2005).

[29] W.F. Pickard, J. Theoret. Biol., 11, 30, (1966).

[30] V.S. Markin, Yu. A. Chimadzhev, Biophys. J., 12, 1032, (1967).

[31] A.L. Hodgkin, A.F. Huxley, J. Physiol., London, 117, 500 (1952).

[32] K. S. Cole, Membranes, ions and impulses, Univ. Calif. Press, Berkeley, 1968.

Depositado:24 Abr 2012 10:12
Última Modificación:28 Oct 2016 08:00

Sólo personal del repositorio: página de control del artículo