Biblioteca de la Universidad Complutense de Madrid

Escape to infinity in the presence of magnetic fields.


Díaz-Cano Ocaña, Antonio y Gonzalez Gascón, F. (2012) Escape to infinity in the presence of magnetic fields. Quarterly of Applied Mathematics, 70 (1). pp. 45-51. ISSN 0033-569X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


Escape to infinity is proved to occur when a charge moves under the action of the magnetic field created by a finite number of planar closed wires.

Tipo de documento:Artículo
Palabras clave:Escape to infinity, Magnetic field, Lorentz equation
Materias:Ciencias > Matemáticas > Álgebra
Código ID:14970

S. Ulam, Problems in modern mathematics, Science Editions, John Wiley & Sons, Inc., 1964.

J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol. 32 (1987), 11–22.

F. Gonz´alez-Gasc´on, D. Peralta-Salas, Motion of a charge in the magnetic field created by wires: impossibility of reaching the wires, Phys. Lett. A. 333 (2004), 72–78.

F. Gonz´alez-Gasc´on, D. Peralta-Salas, Escape to infinity in a Newtonian potential, J. Phys. A 33 (2000), 5361–5368.

F. Gonz´alez-Gasc´on, D. Peralta-Salas, Escape to infinity under the action of a potential and a constant electromagnetic field, J. Phys. A 36 (2003), 6441–6455.

Y. Matsuno, Two-dimensional dynamical system associated with Abel’s nonlinear differential equation, J. Math. Phys. 33 (1992), 412–421.

A. Goriely, C. Hyde, Finite-time blow-up in dynamical systems, Phys. Lett. A 250 (1998), 311–318.

C. Marchioro, Solution of a three-body scattering problem in one dimension, J. Math. Phys. 11 (1970), 2193-2196.

L.P. Fulcher, B.F. Davis, D.A. Rowe, An approximate method for classical scattering problems, Amer. J. Phys. 44 (1976), 956–959.

L. Vaserstein, On systems of particles with finite-range and/or repulsive interactions, Commun. Math. Phys. 69 (1979), 31-56.

G. Galperin, Asymptotic behaviour of particle motion under repulsive forces, Commun.Math. Phys. 84 (1982), 547-556.

E. Gutkin, Integrable Hamiltonians with exponential potential, Phys. D 16 (1985), 398–404.

E. Gutkin, Asymptotics of trajectories for cone potentials, Phys. D 17 (1985), 235–242.

V.J. Menon, D.C. Agrawal, Solar escape revisited, Amer. J. Phys. 54 (1986), 752–753.

E. Gutkin, Continuity of scattering data for particles on the line with directed repulsive interactions, J. Math. Phys. 28 (1987), 351–359.

Depositado:24 Abr 2012 10:00
Última Modificación:06 Feb 2014 10:13

Sólo personal del repositorio: página de control del artículo