Biblioteca de la Universidad Complutense de Madrid

Discrete models of dislocations and their motion in cubic crystals

Impacto

Carpio, Ana y Bonilla, L.L. (2005) Discrete models of dislocations and their motion in cubic crystals. Physical review B, 71 (13). ISSN 1098-0121

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

2MB

URL Oficial: http://link.aps.org/doi/10.1103/PhysRevB.71.134105




Resumen

A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc (simple cubic), fcc, and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving-edge and screw dislocations, and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.


Tipo de documento:Artículo
Palabras clave:Interacting Atomic Chains; Anisotropic Crystal; Reconstruction; Interfaces; Transition; Surfaces; Crowdion; Defects; Crack
Materias:Ciencias > Física > Física-Modelos matemáticos
Código ID:14979
Depositado:24 Abr 2012 10:58
Última Modificación:28 Oct 2016 08:03

Sólo personal del repositorio: página de control del artículo