Biblioteca de la Universidad Complutense de Madrid

Igniting homogeneous nucleation

Impacto

Neu, J.C. y Bonilla, L.L. y Carpio, Ana (2005) Igniting homogeneous nucleation. Physical Review E, 71 (2). ISSN 1539-3755

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

531kB

URL Oficial: http://link.aps.org/doi/10.1103/PhysRevE.71.021601




Resumen

Transient homogeneous nucleation is studied in the limit of large critical sizes. Starting from pure monomers, three eras of transient nucleation are characterized in the classic Becker-Doring kinetic equations with two different models of discrete diffusivity: the classic Turnbull-Fisher formula and an expression describing thermally driven growth of the nucleus. The latter diffusivity yields time lags for nucleation which are much closer to values measured in experiments with disilicate glasses. After an initial stage in which the number of monomers decreases, many clusters of small size are produced and a continuous size distribution is created. During the second era, nucleii are increasing steadily in size in such a way that their distribution appears as a wave front advancing towards the critical size for steady nucleation. The nucleation rate at critical size is negligible during this era. After the wave front reaches critical size, it ignites the creation of supercritical clusters at a rate that increases monotonically until its steady value is reached. Analytical formulas for the transient nucleation rate and the time lag are obtained that improve classical ones and compare very well with direct numerical solutions.


Tipo de documento:Artículo
Palabras clave:Becker-Doring Equations; Transient Nucleation; Kinetics; Distributions; Clusters; Systems; Times; Model; Flux
Materias:Ciencias > Física > Termodinámica
Código ID:14983
Referencias:

[1] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics sPergamon,New York, 1981d.

[2] K. F. Kelton, A. L. Greer, and C. V. Thompson, J. Chem. Phys.79, 6261 s1983d.

[3] K. F. Kelton, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull sAcademic, New York, 1991d, Vol. 45, p. 75.

[4] Mathematical Modelling for Polymer Processing, Mathematics in Industry Vol. 2, edited by V. Capasso sSpringer, Berlin,2003d.

[5] U. Gasser, E. R. Weeks, A. Schofield, P. N. Pursey, and D. A.Weitz, Science 292, 258 s2001d.

[6] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed.sAcademic, New York, 1991d.

[7] J. C. Neu, J. A. Cañizo, and L. L. Bonilla, Phys. Rev. E 66,061406 s2002d.

[8] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 s1961d.

[9] S. Q. Xiao and P. Haasen, Acta Metall. Mater. 39, 651 s1991d.

[10] S. P. Marsh and M. E. Glicksman, Acta Mater. 44, 3761

s1996d.

[11]g O. Penrose, J. Stat. Phys. 89, 305 s1997d.

[12] J. J. L. Velázquez, J. Stat. Phys. 92, 195 s1998d.

[13] B. Niethammer, J. Nonlinear Sci. 13, 115 s2003d.

[14] O. Penrose and A. Buhagiar, J. Stat. Phys. 30, 219 s1983d; O. Penrose, J. L. Lebowitz, J. Marro, M. Kalos, and J. Tobochnik,ibid. 34, 399 s1984d.

[15] V. Ganesan and H. Brenner, Phys. Rev. E 59, 2126 s1999d.

[16] D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, 71 s1949d.

[17] Ya. B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 s1942d; Acta Physicochim. URSS 18, 1 s1943d.

[18] D. Kashchiev, Surf. Sci. 14, 209 s1969d; 18, 389 s1969d.

[19] D. T. Wu, Solid State Phys. 50, 37 s1996d.

[20] H. Trinkaus and M. H. Yoo, Philos. Mag. A 55, 269 s1987d.

[21] V. A. Shneidman, Zh. Tekh. Fiz. 57, 131 s1987d fSov. Phys.Tech. Phys. 32, 76 s1987dg; 58, 2202 s1988d f33, 1338

s1988dg.

[22] G. Shi, J. H. Seinfeld, and K. Okuyama, Phys. Rev. A 41,2101 s1990d; 44, 8443 s1991d. Higher order approximation in J. J. Hoyt and G. Sundar, Scr. Metall. Mater. 29, 1535 s1993d.

[23] V. A. Shneidman, Phys. Rev. A 44, 2609 s1991d.

[24] P. Demo and Z. Kozísek, Phys. Rev. B 48, 3620 s1993d.

[25] J. R. King and J. A. D. Wattis, J. Phys. A 35, 1357 s2002d.

[26] I. L. Maksimov, M. Sanada, and K. Nishioka, J. Chem. Phys.113, 3323 s2000d.

[27] V. A. Shneidman, J. Chem. Phys. 115, 8141 s2001d.

[28] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions sDover, New York, 1965d.

Depositado:24 Abr 2012 11:59
Última Modificación:28 Oct 2016 08:08

Sólo personal del repositorio: página de control del artículo