Biblioteca de la Universidad Complutense de Madrid

Limit speed of particles in a non-homogeneous electric field under friction


Díaz-Cano Ocaña, Antonio y Gonzalez Gascón, F. (2007) Limit speed of particles in a non-homogeneous electric field under friction. Journal of physics A: Mathematical and theoretical, 40 (50). pp. 15029-15039. ISSN 1751-8113

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


It is shown that under certain conditions the limit speed of electric charges moving in a space of type R-n of dimension one or two, under isotropic friction, is preserved under some perturbations. These results hold when relativistic equations of motion are considered.

Tipo de documento:Artículo
Palabras clave:Physics Multidisciplinary; Physics Mathematical
Materias:Ciencias > Física > Física matemática
Código ID:14988

González-Gascón F, Peralta-Salas D and Vegas-Montaner J M 1999 Limit velocity of charged particles in a constant electromagnetic field under friction Phys. Lett. A 251 39–43

Ball JMand Carr J 1976 Decay to zero in critical cases of second order ordinary differential equations of Duffing type Arch. Ration. Mech. Anal. 63 47–57

Dumortier F and Rousseau C 1990 Cubic Li´enard equations with linear damping Nonlinearity 3 1015–39

Naulin R and Urbina J 1998 Asymptotic integration of linear ordinary differential equations of order ‘n’ Acta Math. Hung. 80 129–41

Mustafa O G and Rogovchenko Y V 2002 Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations Nonlinear Anal. 51 339–68

Mustafa O G and Rogovchenko Y V 2004 Global existence and asymptotic behavior of solutions of nonlinear differential equations Funkcial. Ekvac. 47 167–86

Rogovchenko Y V 1980 On the asymptotic behavior of solutions for a class of second order nonlinear differential equations Collect. Math. 49 113–20

Parker G 1977 Projectile motion with air resistance quadratic in the speed Am. J. Phys. 45 606–10

Erlichson H 1983 Maximum projectile range with drag and lift Am. J. Phys. 51 357–62

Kemp H R 1987 Trajectories of projectiles in air for small times of flight Am. J. Phys. 55 1099–102

Tan A, Frick C H and Castillo O 1987 The fly ball trajectory: an older approach revisited Am. J. Phys. 55 37–40

Mohazzabi P and Shea J H 1996 High-altitude free fall Am. J. Phys. 646 1242–6

Deakin M A B and Troup G J 1998 Approximate trajectories for projectile motion with air resistance Am. J. Phys. 66 34–7

Warburton R D H and Wang J 2004 Analysis of asymptotic projectile motion with air resistance using the Lambert W function Am. J. Phys. 72 1404–7

Millikan R A 1913 On the elementary electrical charge and the Avogadro constant Phys. Rev. 2 109–143

Millikan R A 1917 Phil. Mag. 34 1

Millikan R A 1924 The Electron (Chicago: University of Chicago Press) Anderson D L 1964 The Discovery of the Electron (Princeton, NJ: Van Nostrand-Reinhold)

Thomson J J 1899 On the masses of the ions in gases at low pressures Phil. Mag. 5 547–67 48

Rohrlich F 1990 Classical Charged Particles (Reading, MA: Addison-Wesley) (Advanced Book Classics)

Einstein A 1909 Zum gegenw¨artigen Stand des Strahlungsproblems Phys. Z. 10 185–93 Ritz W and Einstein A 1909 Phys. Z. 11 323–4

Shahin G Y 2006 Features of projectile motion in the special theory of relativity Eur. J. Phys. 27 173–81

Depositado:25 Abr 2012 09:02
Última Modificación:06 Feb 2014 10:13

Sólo personal del repositorio: página de control del artículo