Biblioteca de la Universidad Complutense de Madrid

Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators

Impacto

Carpio, Ana (2004) Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators. Physical Review E, 69 (4). ISSN 1539-3755

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

1MB

URL Oficial: http://link.aps.org/doi/10.1103/PhysRevE.69.046601




Resumen

We present a stability theory for kink propagation in chains of coupled oscillators and a different algorithm for the numerical study of kink dynamics. The numerical solutions are computed using an equivalent integral equation instead of a system of differential equations. This avoids uncertainty about the impact of artificial boundary conditions and discretization in time. Stability results also follow from the integral version. Stable kinks have a monotone leading edge and move with a velocity larger than a critical value which depends on the damping strength.


Tipo de documento:Artículo
Palabras clave:Semiconductor Superlattices; Harmonic Liquid; Discrete; Propagation; Dynamics; Equilibrium; Failure; Systems; Pulses
Materias:Ciencias > Física > Física-Modelos matemáticos
Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:14989
Referencias:

1 J. Frenkel and T. Kontorova, Phys. Z. Sowjetunion 13, 1 (1938) J. Phys. (USSR) 1, 137 (1939) ; O.M. Braun and Yu.S. Kivshar, Phys. Rep. 306, 1 (1998).

2 F.R.N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, Oxford, UK, 1967).

3 L.I. Slepyan, Sov. Phys. Dokl. 26, 538 (1981).

4 P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge,(1995), Chap. 10.

5 L.L. Bonilla, J. Phys.: Condens. Matter 14, R341 (2002).

6 A. Tonnelier, Phys. Rev. E 67, 036105 (2003); A. Anderson and B. Sleeman, Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 63 (1995).

7 J.P. Keener and J. Sneyd, Mathematical Physiology (Springer,New York, 1998), Chap. 9.

8 R. Hobart, J. Appl. Phys. 36, 1948 (1965).

9 E. Gerde and M. Marder, Nature (London) 413, 285 (2001);D.A. Kessler, ibid. 413, 260 (2001).

10 A. Carpio and L.L. Bonilla, Phys. Rev. E 67, 056621 (2003).

11 W. Atkinson and N. Cabrera, Phys. Rev. 138, A763 (1965).

12 O. Kresse and L. Truskinovsky, J. Mech. Phys. Solids 51, 1305 (2003).

13 G. Fa´th, Physica D 116, 176 (1998); A. Carpio and L.L. Bonilla,Phys. Rev. Lett. 86, 6034 (2001).

14 M. Peyrard and M.D. Kruskal, Physica D 14, 88 (1984).

15 A. Carpio, L.L. Bonilla, A. Wacker, and E. Scho¨ll, Phys. Rev.E 61, 4866 (2000).

16 A. Carpio (unpublished).

17 V.H. Schmidt, Phys. Rev. B 20, 4397 (1979).

18 P.C. Bressloff and G. Rowlands, Physica D 106, 255 (1997).

19 S. Flach, Y. Zolotaryuk, and K. Kladko, Phys. Rev. E 59, 6105 (1999).

20 P. Rosenau, Phys. Lett. A 118, 222 (1986).

21 M.J. Boussinesq, J. Math. Pures Appl. 17, 55 (1872).

22 J. Bafaluy and J.M. Rubi, Physica A 153, 129 (1988); 153, 147 (1988).

23 E. Schro¨dinger, Ann. Phys. (Leipzig) 44, 1053 (1914).

Depositado:25 Abr 2012 09:07
Última Modificación:28 Oct 2016 08:26

Sólo personal del repositorio: página de control del artículo