Complutense University Library

Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators

Carpio Rodríguez, Ana María (2004) Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators. Physical Review E, 69 (4). ISSN 1539-3755

[img] PDF
Restricted to Repository staff only until 2020.

1MB

Official URL: http://link.aps.org/doi/10.1103/PhysRevE.69.046601

View download statistics for this eprint

==>>> Export to other formats

Abstract

We present a stability theory for kink propagation in chains of coupled oscillators and a different algorithm for the numerical study of kink dynamics. The numerical solutions are computed using an equivalent integral equation instead of a system of differential equations. This avoids uncertainty about the impact of artificial boundary conditions and discretization in time. Stability results also follow from the integral version. Stable kinks have a monotone leading edge and move with a velocity larger than a critical value which depends on the damping strength.

Item Type:Article
Uncontrolled Keywords:Semiconductor Superlattices; Harmonic Liquid; Discrete; Propagation; Dynamics; Equilibrium; Failure; Systems; Pulses
Subjects:Sciences > Physics > Physics-Mathematical models
Sciences > Mathematics > Differential equations
ID Code:14989
References:

1 J. Frenkel and T. Kontorova, Phys. Z. Sowjetunion 13, 1 (1938) J. Phys. (USSR) 1, 137 (1939) ; O.M. Braun and Yu.S. Kivshar, Phys. Rep. 306, 1 (1998).

2 F.R.N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, Oxford, UK, 1967).

3 L.I. Slepyan, Sov. Phys. Dokl. 26, 538 (1981).

4 P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge,(1995), Chap. 10.

5 L.L. Bonilla, J. Phys.: Condens. Matter 14, R341 (2002).

6 A. Tonnelier, Phys. Rev. E 67, 036105 (2003); A. Anderson and B. Sleeman, Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 63 (1995).

7 J.P. Keener and J. Sneyd, Mathematical Physiology (Springer,New York, 1998), Chap. 9.

8 R. Hobart, J. Appl. Phys. 36, 1948 (1965).

9 E. Gerde and M. Marder, Nature (London) 413, 285 (2001);D.A. Kessler, ibid. 413, 260 (2001).

10 A. Carpio and L.L. Bonilla, Phys. Rev. E 67, 056621 (2003).

11 W. Atkinson and N. Cabrera, Phys. Rev. 138, A763 (1965).

12 O. Kresse and L. Truskinovsky, J. Mech. Phys. Solids 51, 1305 (2003).

13 G. Fa´th, Physica D 116, 176 (1998); A. Carpio and L.L. Bonilla,Phys. Rev. Lett. 86, 6034 (2001).

14 M. Peyrard and M.D. Kruskal, Physica D 14, 88 (1984).

15 A. Carpio, L.L. Bonilla, A. Wacker, and E. Scho¨ll, Phys. Rev.E 61, 4866 (2000).

16 A. Carpio (unpublished).

17 V.H. Schmidt, Phys. Rev. B 20, 4397 (1979).

18 P.C. Bressloff and G. Rowlands, Physica D 106, 255 (1997).

19 S. Flach, Y. Zolotaryuk, and K. Kladko, Phys. Rev. E 59, 6105 (1999).

20 P. Rosenau, Phys. Lett. A 118, 222 (1986).

21 M.J. Boussinesq, J. Math. Pures Appl. 17, 55 (1872).

22 J. Bafaluy and J.M. Rubi, Physica A 153, 129 (1988); 153, 147 (1988).

23 E. Schro¨dinger, Ann. Phys. (Leipzig) 44, 1053 (1914).

Deposited On:25 Apr 2012 09:07
Last Modified:06 Feb 2014 10:13

Repository Staff Only: item control page