Biblioteca de la Universidad Complutense de Madrid

On The Surjective Dunford-Pettis Property

Impacto

Cembranos, Pilar y Bombal Gordón, Fernando y Mendoza Casas, José (1990) On The Surjective Dunford-Pettis Property. Mathematische Zeitschrift, 204 (3). pp. 373-380. ISSN 0025-5874

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

855kB

URL Oficial: http://www.digizeitschriften.de/dms/toc/?PPN=GDZPPN002437600




Resumen

A Banach space E has the Dunford-Pettis property if every operator from E into a reflexive Banach space is a Dunford-Pettis operator. D. Leung [Math. Z. 197, 21-32 (1988] introduced a formally weaker property, the surjective Dunford-Pettis property, by imposing that every operator from E onto a reflexive Banach space is Dunford-Pettis.
This property is used by Leung to obtain sustantial extensions of previous results of Lotz on ergodic operators and strongly continuous semigroups of operators.
Also he proved that the surjective Dunford- Pettis property is, in fact, genuinely weaker than the Dunford-Pettis property, building a Banach space L with the surjective Dunford-Pettis property that fails the Dunford-Pettis property.
In this paper we obtain several results about the surjective Dunford- Pettis property showing some of the analogies and differences with the Dunford-Pettis property.
Also, new properties of the interesting Banach space L built by Leung are obtained.


Tipo de documento:Artículo
Palabras clave:Mathematics
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:14992
Depositado:25 Abr 2012 09:03
Última Modificación:03 Mar 2016 14:50

Sólo personal del repositorio: página de control del artículo