Complutense University Library

Edge dislocations in crystal structures considered as traveling waves in discrete models

Carpio Rodríguez, Ana María and Bonilla , L.L. (2003) Edge dislocations in crystal structures considered as traveling waves in discrete models. Physical Review Letters, 90 (13). ISSN 0031-9007

[img] PDF
Restricted to Repository staff only until 2020.

207kB

Official URL: http://link.aps.org/doi/10.1103/PhysRevLett.90.135502

View download statistics for this eprint

==>>> Export to other formats

Abstract

The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity, and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. Dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is analytically described. N parallel edge dislocations whose average interdislocation distance divided by the Burgers vector of a single dislocation is L≫1 can depin a given one if N=O(L). Then a limiting dislocation density can be defined and calculated in simple cases.

Item Type:Article
Subjects:Sciences > Physics > Mathematical physics
Sciences > Physics > Materials
ID Code:15012
References:

[1] F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, Oxford, 1967).

[2] J. P. Hirth and J. Lothe, Theory of Dislocations (John Wiley and Sons, New York, 1982).

[3] L. B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, U.K., 1990).

[4] H. S. J. van der Zant, T. P. Orlando, S.Watanabe, and S. H. Strogatz, Phys. Rev. Lett. 74, 174 (1995).

[5] E. Gerde and M. Marder, Nature (London) 413, 285 (2001). See also D. A. Kessler, Nature (London) 413, 260 (2001).

[6] L. D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, London, 1986), 3rd ed., Chap. 4.

[7] A. I. Landau, A. S. Kovalev, and A. D. Kondratyuk, Phys. Status Solidi B 179, 373 (1993); A. I. Landau, Phys. Status Solidi B 183, 407 (1994).

[8] The far field of a dislocation is not spatially homogeneous, and it should be rigidly and self-consistently displaced at the velocity of the dislocation core.

[9] D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Oxford, U.K., 2001), 4th ed.

[10] I. Groma and B. Bako´ , Phys. Rev. Lett. 84, 1487 (2000).

[11] A. Carpio and L. L. Bonilla (unpublished).

[12] A. Carpio, S. J. Chapman, S. D. Howison, and J. R. Ockendon, Philos. Trans. R. Soc. London, Ser. A 355, 2013 (1997).

[13] P. S. Lomdahl and D. J. Srolovitz, Phys. Rev. Lett. 57, 2702 (1986).

[14] A. Carpio, Appl. Math. Lett. 15, 415 (2002).

[15] A. Carpio and L. L. Bonilla, Phys. Rev. Lett. 86, 6034 (2001).

[16] A. Carpio, L. L. Bonilla, and G. Dell’Acqua, Phys. Rev. E 64, 036204 (2001).

[17] N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

[18] J. C. Neu, Physica (Amsterdam) 43D, 385 (1990); 43D, 407 (1990); 43D, 421 (1990).

Deposited On:25 Apr 2012 09:17
Last Modified:06 Feb 2014 10:14

Repository Staff Only: item control page