Complutense University Library

Collision orbits in the presence of perturbations.


Díaz-Cano Ocaña, Antonio and Gonzalez Gascón, F. (2006) Collision orbits in the presence of perturbations. Physics Letters A, 358 (3). pp. 199-202. ISSN 0375-9601

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


It is shown that for particles moving in a plane under the action of attracting central potentials and a perturbing force (potential but not central),orbits representing the falling down of the particle to the center of force exist.

Item Type:Article
Uncontrolled Keywords:Collision orbits; Perturbation of central potentials
Subjects:Sciences > Physics > Mathematical physics
ID Code:15014

[1] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications, New York, 2003; V.I. Arnold, Mathematical Methods of Classical Mechanics, in: Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978.

[2] E. Serra, S. Terracini, Nonlinear Anal. 22 (1994) 45; V. Coti Zelati, E. Serra, Ann. Mat. Pura Appl. 166 (1994) 343.

[3] A. Ambrosetti, V. Coti Zelati, Math. Z. 201 (1989) 227; V. Coti Zelati, Nonlinear Anal. 12 (1988) 209.

[4] Z. Makó, F. Szenkovits, Celestial Mech. Dynam. Astronom. 90 (2004) 51.

[5] F. Diacu, E. Pérez-Chavela, M. Santoprete, J. Math. Phys. 46 (2005) 072701.

[6] S. Axler, P. Bourdon,W. Ramey, Harmonic Function Theory, in: Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001.

[7] R.J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978.

[8] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, in: Mathematical Surveys and Monographs, vol. 35, American Mathematical Society, Providence, 1990; D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, in: Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1999.

Deposited On:26 Apr 2012 08:33
Last Modified:06 Feb 2014 10:14

Repository Staff Only: item control page