Biblioteca de la Universidad Complutense de Madrid

Multilinear forms of Hilbert type and some other distinguished forms

Impacto

Cobos, Fernando y Kühn, Thomas y Peetre, Jaak (2006) Multilinear forms of Hilbert type and some other distinguished forms. Integral Equations and Operator Theory, 56 (1). pp. 57-70. ISSN 0378-620X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

211kB

URL Oficial: http://www.springerlink.com/content/pr23048026465467/fulltext.pdf




Resumen

We give some new examples of bounded multilinear forms on th
Hilbert spaces 2 and L2(0,∞). We characterize those which are compact or Hilbert-Schmidt. In particular, we study m-linear forms (m ≥ 3) on 2 which can be regarded as the multilinear analogue of the famous Hilbert matrix. We
Also determine the norm of the permanent on Kn, where K = R or C.


Tipo de documento:Artículo
Palabras clave:Trilinear Forms; Bilinear-Forms; Matrix; Spectrum; multilinear forms of the type of the Hilbert matrix; distinguished forms on L-2(0, infinity); norm of the permanent;Mathematics
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:15027
Referencias:

1] J. Barria and A.P. Halmos, Asymptotic Toepliz operators. Trans. Amer. Math. Soc. 273 (1982), 621–630.

[2] G. Bennett, Factoring the classical inequalities. Mem. Amer. Math. Soc. 120 (1996), N. 576.

[3] B. Bernhardsson and J. Peetre, Singular values of trilinear forms. Experimental Math. 10 (2001), 509–517.

[4] M.-D. Choi, Tricks or treats with the Hilbert matrix. Amer. Math. Monthly 90 (1983), 301–312.

[5] F. Cobos, T. K¨uhn and J. Peetre, Schatten-von Neumann classes of multilinear forms. Duke Math. J. 65 (1992), 121–156.

[6] F. Cobos, T. K¨uhn and J. Peetre, On Sp−classes of trilinear forms. J. London Math. Soc. 59 (1999), 1003–1022.

[7] F. Cobos, T. K¨uhn and J. Peetre, Extreme points of the complex binary trilinear ball. Studia Math. 138 (2000), 81–92.

[8] F. Cobos, T. K¨uhn and J. Peetre, Remarks on symmetries of trilinear forms. Rev. R. Acad. Cienc. Exact. Fis. Nat. (Esp.) 94 (2000), 441–449.

[9] J.G. van der Corput and G. Schaake, Ungleichungen f¨ur Polynome und trigonometrische Polynome. Compositio Math. 2 (1935), 321–361; Berichtigung ibid. 3 (1936), 128.

[10] C. Davis and P. Ghatage, On the spectrum of the Bergman-Hilbert matrix II. Canad. Math. Bull. 33 (1990), 60–64.

[11] N. Dunford and J.T. Schwartz, Linear operators, Part II. Interscience Publishers, New York, 1963. 70 Cobos, K¨uhn and Peetre IEOT

[12] P.G. Ghatage, On the spectrum of the Bergman-Hilbert matrix. Linear Algebra Appl. 97 (1987), 57–63.

[13] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities. Cambridge Univ. Press, Cambridge, 1964.

[14] D. Hilbert, Grundz¨uge einer allgemeinen Theorie der linearen Integralgleichungen. Vierte Mitteilung, Nachr. d. K. Ges. d. Wiss., G¨ottingen, math.-phys. Kl. (1906), 157–227.

[15] D. Hilbert, Grundz¨uge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig und Berlin: B.G. Teubner. XXVI u. 282 S. gr. 8+. (Fortschr. d. math. Wissensch. in Monographien hrsgb. von O. Blumenthal, Heft 3) (1912).

[16] L. H¨ormander, On a theorem of Grace. Math. Scand. 2 (1954), 55–64.

[17] O.D. Kellog, On bounded polynomials in several variables. Math. Z. 27 (1928), 55–64.

[18] Z. Nehari, On bounded bilinear forms. Ann. of Math. 65 (1957), 153-162.

[19] N.K. Nikol’ski˘i, Treatise on the Shift Operator: Spectral Function Theory. Springer (Grundlehren 273), Berlin, 1986.

[20] V.V. Peller, Hankel Operators and Their Applications. Springer Monographs in Math., New York, 2003.

[21] M. Riesz, Sur les maxima des formes bilin´earies et sur les fonctionelles lin´eaires. Acta Math. 49 (1926), 465-497.

[22] J. Schur, Bemerkungen zur Theorie der beschr¨ankten Bilinearformen mit unendlich vielen Ver¨anderlichen. J. Reine Angew. Math. 140 (1911), 1-28.

Depositado:26 Abr 2012 08:19
Última Modificación:06 Feb 2014 10:14

Sólo personal del repositorio: página de control del artículo