Complutense University Library

On interpolation of Asplund operators


Cobos, Fernando and Fernández-Cabrera, Luz M. and Manzano, Antonio and Martínez, Antón (2005) On interpolation of Asplund operators. Mathematische Zeitschrift, 250 (2). pp. 267-277. ISSN 0025-5874

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


We study the interpolation properties of Asplund operators by the complex method, as well as by general J - and K-methods.

Item Type:Article
Uncontrolled Keywords:Real Interpolation; Ideals; Spaces
Subjects:Sciences > Mathematics > Numerical analysis
ID Code:15043

1. Asplund, E.: Fr´echet differentiability of convex functions, Acta Math. 121, 31–47


2. Bergh, J., L¨ofstr¨om, J.: Interpolation spaces. An introduction. Springer, Berlin, 1976

3. Bourgin, R.D.: Geometric aspects of convex sets with the Radon-Nikod´ym property.

Springer Lect. Notes in Maths. 993, Berlin, 1983

4. Brudnyˇı, Y., Krugljak, N.: Interpolation functors and interpolation spaces. Vol. 1,

North-Holland, Amsterdam, 1991

5. Cobos, F., Cwikel, M., Matos, P.: Best possible compactness results of Lions-Peetre

type. Proc. Edinburgh Math. Soc. 44, 153–172 (2001)

6. Cobos, F., Fern´andez-Cabrera, L.M., Manzano, A., Mart´ınez, A.: Real interpolation

and closed operator ideals. J. Math. Pures et Appl. 83, 417–432 (2004)

7. Cobos, F., Manzano, A., Mart´ınez, A., Matos, P.: On interpolation of strictly singular

operators, strictly cosingular operators and related operator ideals. Proc. Royal Soc.

Edinb. 130A, 971–989 (2000)

8. Cwikel, M., Peetre, J.: Abstract K and J spaces. J. Math. Pures et Appl. 60, 1–50


9. Davis, W.J., Figiel, T., Johnson, W.B., Pelczy´nski, A.: Factoring weakly compact

operators. J. Funct. Analysis 17, 311–327 (1974)

10. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge Studies

in Advanced Mathematics, vol. 43, Cambridge Univ. Press, 1995

11. Diestel, J., Ulh, Jr., J.J.,Vector measures.Am.Math. Soc. Surveys No. 15, Providence,

Rhode Island, 1977

On interpolation of Asplund operators 277

12. Edgar, G.A.: Asplund operators and a.e. convergence. J. Multivar. Anal. 10, 460–466


13. Fabian, M.J.: Gˆateaux differentiability of convex functions and topology. Weak

Asplund spaces. Canadian Math. Soc. Monographs and Advance Texts, John Wiley

and Sons, Inc., NewYork 1997

14. Giles, J.R.: Convex analysis with applications in differentiation of convex functions.

Research Notes in Math. No. 58, Pitman, Boston, 1982

15. Heinrich, S.: Closed operator ideals and interpolation. J. Funct. Analysis 35, 397–411


16. Janson, S.: Minimal and maximal methods of interpolation. J. Funct. Analysis 44,

50–73 (1981)

17. Levy, M.: L’espace d’interpolation r´eel (A0,A1)θ,p contient _p. Compt. Rend. Acad.

Sci. Paris S´er. A 289, 675–677 (1979)

18. Mastylo, M.: Interpolation spaces not containing _1. J. Math. Pures et Appl. 68, 153–

162 (1989)

19. Nilsson, P.: Reiteration theorems for real interpolation and approximation spaces.

Ann. Mat. Pura Appl. 132, 291–330 (1982)

20. Peetre, J.: A theory of interpolation of normed spaces, Lecture Notes, Brasilia, 1963

[Notes Mat. 39, 1–86 (1968)]

21. Peetre, J.: H

∞ and complex interpolation. Technical Report, Lund, 1981

22. Pietsch, A.: Operator ideals. North-Holland, Amsterdam, 1980

23. Reˇınov, O.I.: RN-sets in Banach spaces. Functional Anal. Appl. 12, 63–64 (1978)

24. Stegall, C.: The Radon-Nikod´ym property in conjugate Banach spaces. II. Trans. Am.

Math. Soc. 264, 507–519 (1981)

25. Triebel, H.: Interpolation theory, function spaces, differential operators. North-

Holland, Amsterdam, 1978

26. Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam, 1983

Deposited On:27 Apr 2012 09:12
Last Modified:06 Feb 2014 10:14

Repository Staff Only: item control page