Biblioteca de la Universidad Complutense de Madrid

On interpolation of Asplund operators

Impacto

Cobos, Fernando y Fernández-Cabrera, Luz M. y Manzano, Antonio y Martínez, Antón (2005) On interpolation of Asplund operators. Mathematische Zeitschrift, 250 (2). pp. 267-277. ISSN 0025-5874

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

177kB

URL Oficial: http://www.springerlink.com/content/tb07b7kquhcepmmk/fulltext.pdf




Resumen

We study the interpolation properties of Asplund operators by the complex method, as well as by general J - and K-methods.


Tipo de documento:Artículo
Palabras clave:Real Interpolation; Ideals; Spaces
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:15043
Referencias:

1. Asplund, E.: Fr´echet differentiability of convex functions, Acta Math. 121, 31–47

(1968)

2. Bergh, J., L¨ofstr¨om, J.: Interpolation spaces. An introduction. Springer, Berlin, 1976

3. Bourgin, R.D.: Geometric aspects of convex sets with the Radon-Nikod´ym property.

Springer Lect. Notes in Maths. 993, Berlin, 1983

4. Brudnyˇı, Y., Krugljak, N.: Interpolation functors and interpolation spaces. Vol. 1,

North-Holland, Amsterdam, 1991

5. Cobos, F., Cwikel, M., Matos, P.: Best possible compactness results of Lions-Peetre

type. Proc. Edinburgh Math. Soc. 44, 153–172 (2001)

6. Cobos, F., Fern´andez-Cabrera, L.M., Manzano, A., Mart´ınez, A.: Real interpolation

and closed operator ideals. J. Math. Pures et Appl. 83, 417–432 (2004)

7. Cobos, F., Manzano, A., Mart´ınez, A., Matos, P.: On interpolation of strictly singular

operators, strictly cosingular operators and related operator ideals. Proc. Royal Soc.

Edinb. 130A, 971–989 (2000)

8. Cwikel, M., Peetre, J.: Abstract K and J spaces. J. Math. Pures et Appl. 60, 1–50

(1981)

9. Davis, W.J., Figiel, T., Johnson, W.B., Pelczy´nski, A.: Factoring weakly compact

operators. J. Funct. Analysis 17, 311–327 (1974)

10. Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators. Cambridge Studies

in Advanced Mathematics, vol. 43, Cambridge Univ. Press, 1995

11. Diestel, J., Ulh, Jr., J.J.,Vector measures.Am.Math. Soc. Surveys No. 15, Providence,

Rhode Island, 1977

On interpolation of Asplund operators 277

12. Edgar, G.A.: Asplund operators and a.e. convergence. J. Multivar. Anal. 10, 460–466

(1980)

13. Fabian, M.J.: Gˆateaux differentiability of convex functions and topology. Weak

Asplund spaces. Canadian Math. Soc. Monographs and Advance Texts, John Wiley

and Sons, Inc., NewYork 1997

14. Giles, J.R.: Convex analysis with applications in differentiation of convex functions.

Research Notes in Math. No. 58, Pitman, Boston, 1982

15. Heinrich, S.: Closed operator ideals and interpolation. J. Funct. Analysis 35, 397–411

(1980)

16. Janson, S.: Minimal and maximal methods of interpolation. J. Funct. Analysis 44,

50–73 (1981)

17. Levy, M.: L’espace d’interpolation r´eel (A0,A1)θ,p contient _p. Compt. Rend. Acad.

Sci. Paris S´er. A 289, 675–677 (1979)

18. Mastylo, M.: Interpolation spaces not containing _1. J. Math. Pures et Appl. 68, 153–

162 (1989)

19. Nilsson, P.: Reiteration theorems for real interpolation and approximation spaces.

Ann. Mat. Pura Appl. 132, 291–330 (1982)

20. Peetre, J.: A theory of interpolation of normed spaces, Lecture Notes, Brasilia, 1963

[Notes Mat. 39, 1–86 (1968)]

21. Peetre, J.: H

∞ and complex interpolation. Technical Report, Lund, 1981

22. Pietsch, A.: Operator ideals. North-Holland, Amsterdam, 1980

23. Reˇınov, O.I.: RN-sets in Banach spaces. Functional Anal. Appl. 12, 63–64 (1978)

24. Stegall, C.: The Radon-Nikod´ym property in conjugate Banach spaces. II. Trans. Am.

Math. Soc. 264, 507–519 (1981)

25. Triebel, H.: Interpolation theory, function spaces, differential operators. North-

Holland, Amsterdam, 1978

26. Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam, 1983

Depositado:27 Abr 2012 09:12
Última Modificación:06 Feb 2014 10:14

Sólo personal del repositorio: página de control del artículo