Complutense University Library

Pulse propagation in discrete systems of coupled excitable cells

Carpio Rodríguez, Ana María and Bonilla , L.L. (2002) Pulse propagation in discrete systems of coupled excitable cells. SIAM Journal on applied mathematics, 63 (2). pp. 619-635. ISSN 0036-1399

[img] PDF
Restricted to Repository staff only until 2020.

469kB

Official URL: http://www.siam.org/journals/siap/63-2/39173.html

View download statistics for this eprint

==>>> Export to other formats

Abstract

Propagation of pulses in myelinated fibers may be described by appropriate solutions of spatially discrete FitzHugh-Nagumo systems. In these systems, propagation failure may occur if either the coupling between nodes is not strong enough or the recovery is too fast. We give an asymptotic construction of pulses for spatially discrete FitzHugh-Nagumo systems, which agrees well with numerical simulations, and discuss the evolution of initial data into pulses and pulse generation at a boundary. Formulas for the speed and length of pulses are also obtained.


Item Type:Article
Uncontrolled Keywords:Discrete reaction-diffusion equations, traveling wave pulses, propagation failure, spatially discrete FitzHugh–Nagumo system
Subjects:Sciences > Mathematics > Mathematical statistics
Sciences > Mathematics > Differential equations
ID Code:15044
References:

[1] A. Amann, A. Wacker, L. L. Bonilla, and E. Sch¨oll, Dynamic scenarios of multistable switching in semiconductor superlattices, Phys. Rev. E (3), 63 (2001), pp. 1–8.

[2] A. R. A. Anderson and B. D. Sleeman, Wave front propagation and its failure in coupled systems of discrete bistable cells modelled by FitzHugh-Nagumo dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), pp. 63–74.

[3] J. Bell and C. Costner, Threshold behavior and propagation for nonlinear differentialdifference systems motivated by modeling myelinated axons, Quart. Appl. Math., 42 (1984),pp. 1–13.

[4] L. L. Bonilla, Theory of nonlinear charge transport, wave propagation and self-oscillations in semiconductor superlattices, J. Phys. Condensed Matter, 14 (2002), pp. R341–R381.

[5] V. Booth and T. Erneux, Understanding propagation failure as a slow capture near a limit point, SIAM J. Appl. Math., 55 (1995), pp. 1372–1389.

[6] J. W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Metallurgica, 8 (1960), pp. 554–562.

[7] A. Carpio and L. L. Bonilla, Wave front depinning transitions in discrete one-dimensional reaction diffusion equations, Phys. Rev. Lett., 86 (2001), pp. 6034–6037.

[8] A. Carpio, L. L. Bonilla, and G. Dell’Acqua, Wave front motion in semiconductor superlattices,Phys. Rev. E (3), 64 (2001), pp. 1–9.

[9] A. Carpio and L. L. Bonilla, Depinning transitions in discrete reaction-diffusion equations,SIAM J. Appl. Math., to appear.

[10] A. Carpio, S. J. Chapman, S. P. Hastings, and J. B. Mcleod, Wave solutions for a discrete reaction-diffusion equation, European J. Appl. Math., 11 (2000), pp. 399–412.

[11] G. F´ath, Propagation failure of traveling waves in a discrete bistable medium, Phys. D, 116 (1998), pp. 176–190.

[12] R. FitzHugh, Impulse and physiological states in models of nerve membrane, Biophys. J., 1 (1961), pp. 445–466.

[13] J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning, J. Phys.USSR, 13 (1938), pp. 1–10.

[14] G. Gr¨uner, The dynamics of charge-density waves, Rev. Modern Phys., 60 (1988), pp. 1129–1181.

[15] S. P. Hastings, The existence of homoclinic and periodic orbits for FitzHugh-Nagumo’s equations,Q. J. Math., 27 (1976), pp. 123–134.

[16] S. P. Hastings and X. Chen, Pulse waves for a semi-discrete Morris-Lecar-type model, JMath. Biol., 38 (1999), pp. 1–20.

[17] R. Hobart, Peierls-barrier minima, J. Appl. Phys., 36 (1965), pp. 1948–1952.

[18] J. Kastrup, R. Hey, K. Ploog, H. T. Grahn, L. L. Bonilla, M. Kindelan, M. Moscoso,A. Wacker, and J. Gal´an, Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices, Phys. Rev. B (3), 55 (1997), pp. 2476–2488.

[19] J. P. Keener, Waves in excitable media, SIAM J. Appl. Math., 39 (1980), pp. 528–548.

[20] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556–572.

[21] J. P. Keener and J. Sneyd, Mathematical Physiology, Springer, New York, 1998, Chapter 9.

[22] J. P. Keener, Propagation of waves in an excitable medium with discrete release sites, SIAM J. Appl. Math., 61 (2000), pp. 317–334.

[23] J. R. King and S. J. Chapman, Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations, European J. Appl. Math., 12 (2001), pp. 433–463.

[24] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), pp. 49–127.

[25] C. C. McIntyre and W. M. Grill, Excitation of central nervous system neurons by nonuniform lectric fields, Biophys. J., 76 (1999), pp. 878–888.

[26] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. Inst. Radio Engineers, 50 (1962), pp. 2061–2070.

[27] J. Rinzel and J. B. Keller, Traveling wave solutions of a nerve conduction equation, Biophys.J., 13 (1973), pp. 1313–1337.

[28] A. C. Scott, The electrophysics of a nerve fiber, Rev. Modern Phys., 47 (1975), pp. 487–533.

[29] J. J. Struijk, The extracellular potential of a myelinated nerve fiber in an unbounded medium and in nerve cuff models, Biophys. J., 72 (1997), pp. 2457–2469.

[30] G. de Vries, A. Sherman, and H.-R. Zhu, Diffusively coupled bursters: Effects of cell heterogeneity,Bull. Math. Biol., 60 (1998), pp. 1167–1200.

[31] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J.Differential Equations, 96 (1992), pp. 1–27.

Deposited On:27 Apr 2012 09:09
Last Modified:06 Feb 2014 10:14

Repository Staff Only: item control page