Biblioteca de la Universidad Complutense de Madrid

On Interpolation of Function Spaces by Methods Defined by Means of Polygons

Impacto

Cobos, Fernando y Martín, Joaquim (2005) On Interpolation of Function Spaces by Methods Defined by Means of Polygons. Journal of Approximation Theory, 13 (2). pp. 182-203. ISSN 1096-0430 (En prensa)

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

327kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0021904504002096




Resumen

We describe the spaces obtained by applying the interpolation methods associated to polygons to
N-tuples of weighted Lp-spaces, N-tuples of classical Lorentz spaces and some other N-tuples of
function spaces.


Tipo de documento:Artículo
Palabras clave:Banach-Spaces; Lorentz Spaces; Reiteration; Equivalence; Families; Duality; Theorem; Real; Interpolation methods associated to polygons; weighted L-P-tuples; Lorentz spaces; interpolation of function spaces
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:15053
Referencias:

[1] I. Asekritova, N. Krugljak, On equivalence of K- and J - methods for (n+1)-tuples of Banach spaces, Studia Math. 122 (1997) 99–116.

[2] I. Asekritova, N. Krugljak, L. Maligranda, L. Nikolova, L.-E. Persson, Lions–Peetre reiteration formulas for triples and their applications, Studia Math. 145 (2001) 219–254.

[3] C. Bennett, B. Sharpley, Interpolation of Operators, Academic Press, NewYork, 1988.

[4] J. Bergh, J. Lofstrom, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.

[5] Y. Brudnyıˇ, N. Krugljak, Interpolation functors and interpolation spaces, vol. 1, North-Holland, Amsterdam, 1991.

[6] M.J. Carro, L.I. Nikolova, J. Peetre, L.-E. Persson, Some real interpolation methods for families of Banach spaces: a comparison, J. Approx. Theory 89 (1997) 26–57.

[7] M.J. Carro, J. Soria,Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993) 480–494.

[8] J. Cerda, H. Coll, J. Martin, Entropy function spaces and interpolation, J. Math. Anal. Appl., accepted.

[9] F. Cobos, P. Fernandez–Martinez, Reiteration and a Wolff theorem for interpolation methods defined by means of polygons, Studia Math. 102 (1992) 239–256.

[10] F. Cobos, P. Fernandez–Martinez,A duality theorem for interpolation methods associated to polygons, Proc. Amer. Math. Soc. 121 (1994) 1093–1101.

[11] F. Cobos, P. Fernandez–Martinez, A. Martinez, On reiteration and the behavior of weak compactness under certain interpolation methods, Collect. Math. 50 (1999) 53–72.

[12] F. Cobos, P. Fernandez–Martinez, A. Martinez, Y. Raynaud, On duality between K- and J -spaces, Proc. Edinburgh Math. Soc. 42 (1999) 43–63.

[13] F. Cobos, P. Fernandez-Martinez, T. Schonbek, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory 80 (1995) 321–351.

[14] F. Cobos, T. Kuhn, T. Schonbek, One-sided compactness results for Aronszajn–Gagliardo functors, J. Funct. Anal. 106 (1992) 274–313.

[15] F. Cobos, J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. 63 (1991) 371–400.

[16] M. Cwikel, S. Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. Math. 66 (1987) 234–290.

[17] S. Ericsson, Certain reiteration and equivalence results for the Cobos–Peetre polygon interpolation method, Math. Scand. 85 (1999) 301–319.

[18] A. Favini, Su una estensione del metodo d’interpolazione complesso, Rend. Sem. Mat. Univ. Padova 47 (1972) 243–298.

[19] D.L. Fernandez, Interpolation of 2n Banach spaces, Studia Math. 45 (1979) 175–201.

[20] D.L. Fernandez, Interpolation of 2d Banach spaces and the Calderon space X(E), Proc. London Math. Soc. 56 (1988) 143–162.

[21] C. Foia,s, J.L. Lions, Sur certains theoremes d’interpolation, Acta Sci. Math. (Szeged) 22 (1961) 269–282.

[22] S.G. Kreıˇn, Ju.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, American Mathematial Society of Providence, RI, 1982.

[23] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer, Verlag, Berlin, Heidelberg, New York, 1979.

[24] G.G. Lorentz, On the theory of space _, Pacific J. Math. 1 (1951) 411–429.

[25] M. Milman, On interpolation of 2n Banach spaces and Lorentz spaces with mixed norms, J. Funct. Anal. 41 (1981) 1–7.

[26] G. Sparr, Interpolation of several Banach spaces, Ann. Math. Pura Appl. 99 (1982) 247–316.

[27] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[28] A. Yoshikawa, Sur la theorie d’espaces d’interpolation—Les espaces de moyenne de plusieurs espaces de Banach, J. Fac. Sci. Univ. Tokyo 16 (1970) 407–468.

Depositado:03 May 2012 09:39
Última Modificación:06 Feb 2014 10:15

Sólo personal del repositorio: página de control del artículo