Cobos, Fernando and Romero, Raúl
(2004)
*Lions-Peetre type compactness results for several Banach spaces.*
Mathematical Inequalities & Applications, 7
(4).
pp. 557-571.
ISSN 1331-4343

PDF
Restricted to Repository staff only until 2020. 110kB |

Official URL: http://files.ele-math.com/abstracts/mia-07-57-abs.pdf

## Abstract

Working with interpolation methods associated to polygons, a result of Cobos and Peetre guarantees that the interpolated operator is compact provided all but two restrictions of the operator (located in adjacent vertices) are compact. We characterize here those intermediate spaces that satisfy the conclusion of Cobos-Peetre result for all operators. We also establish some results on rank-one interpolation spaces.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Interpolation Methods; Operators; Noncompactness; Polygons; Real; Interpolation methods associated to polygons; compactness of interpolated operators; rank-one interpolation spaces; Mathematics |

Subjects: | Sciences > Mathematics > Numerical analysis |

ID Code: | 15057 |

References: | [1] J. BERGH AND J. L¨OFSTR¨OM, Interpolation Spaces. An Introduction, Springer, 1976. [2] B. CARL AND I. STEPHANI, Entropy, Compactness and the Approximation of Operators, Cambridge University Press, Cambridge, UK, 1990. [3] F. COBOS, On the optimality of compactness results for interpolation methods associated to polygons, Indag. Math. 5 (1994) 397–401. [4] F. COBOS, M. CWIKEL AND P. MATOS, Best possible compactness results of Lions-Peetre type, Proc. Edinb. Math. Soc. 44 (2001) 153–172. [5] F. COBOS, L. M. FERN´ANDEZ-CABRERA, A.MART´INEZ AND E. PUSTYLNIK, Some interpolation results that are the exclusive property of compact operators, Proc. R. Soc. Edinb. 132A (2002) 317–328. [6] F.COBOS, P.FERN´ANDEZ-MART´INEZANDA.MART´INEZ, Interpolation of the measure of non-compactness by the real method, Studia Math. 135 (1999) 25–38. [7] F. COBOS, P.FERN´ANDEZ-MART´INEZ AND A.MART´INEZ, Measure of non-compactness and interpolation methods associated to polygons, Glasgow Math. J. 41 (1999) 65–79. [8] F. COBOS, P. FERN´ANDEZ-MART´INEZ AND T. SCHONBEK, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory 80 (1995) 321–351. [9] F. COBOS, T. K¨UHN AND T. SCHONBEK, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Analysis 106 (1992) 274–313. [10] F. COBOS, A.MANZANO, A.MART´I NEZ AND P. MATOS, On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals, Proc. R. Soc. Edinb. 130A (2000) 971–989. [11] F. COBOS AND J. PEETRE, Interpolation of compact operators: The multidimensional case, Proc. London Math. Soc. 63 (1991) 371–400. [12] M. CWIKEL AND S. JANSON, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. inMath. 66 (1987) 234–290. [13] A. A. DMITRIEV, The interpolation of one-dimensional operators, Voroneˇz Gos. Univ. Trudy Nauˇcn. -Issled. Inst. Mat. VGU Vyp. 11 Sb. Statej Funkcional. Anal. i Prilozen 11 (1973) 31–43 (in Russian). [14] G. DORE, D.GUIDETTI AND A. VENNI, Complex interpolation for 2n Banach spaces, Rend. Sem. Mat. Univ. Padova 76 (1986) 1–36. [15] D. E. EDMUNDS AND W. D. EVANS, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987. [16] A. FAVINI, Su una estensione del metodo d’interpolazione complesso, Rend. Sem. Mat. Univ. Padova (1972) 243–298. [17] D. L. FERNANDEZ, Interpolation of 2n Banach spaces, Studia Math. 45 (1979) 175–201. [18] D. L. FERNANDEZ, An extension of the complex method of interpolation, Boll. Un. Mat. Ital. (5) B-18 (1981) 721–732. [19] S. G. KREIN, J. I. PETUNIN AND E. M. SEMENOV, Interpolation of Linear Operators, Amer.Math. Soc., Providence, R.I., 1982. [20] J. L. LIONS AND J. PEETRE, Sur une classe d’espaces d’interpolation, Inst. Hautes ´Etudes Sci. Publ. Math. 19 (1964) 5–68. [21] L. I. NIKOLOVA, Some estimates of measure of non-compactness for operators acting in interpolation spaces – the multidimensional case, C. R. Acad. Bulg. Sci. 44 (1991) 5–8. [22] E. PUSTYLNIK, Minimal and maximal intermediate Banach spaces, Ukrain. Mat. Zhurnal 29 (1977) 129–137. (English transl. in Ukrainian Math. J. 29 (1977) 102–107). [23] E. I. PUSTYLNIK, Embedding functions and their role in interpolation theory, Abstract Appl. Analysis 1 (1996) 305–325. [24] G. SPARR, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99 (1974) 247–316. [25] M. F. TEIXEIRA AND D. E. EDMUNDS, Interpolation theory and measure of non-compactness, Math. Nachr. 104 (1981) 129–135. [26] H. TRIEBEL, Interpolation Theory, Function Spaces, DifferentialOperators, North-Holland, Amsterdam, 1978. |

Deposited On: | 03 May 2012 09:34 |

Last Modified: | 06 Feb 2014 10:15 |

Repository Staff Only: item control page