Biblioteca de la Universidad Complutense de Madrid

Wave Front Depinning Transition in Discrete One-Dimensional Reaction-Diffusion Systems

Impacto

Carpio, Ana y Bonilla, L.L. (2001) Wave Front Depinning Transition in Discrete One-Dimensional Reaction-Diffusion Systems. Physical Review Letters, 86 (26). ISSN 0031-9007

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

98kB

URL Oficial: http://link.aps.org/doi/10.1103/PhysRevLett.86.6034




Resumen

Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and controlled by constant external forces. A theory of the depinning transition for these systems, including scaling laws and asymptotics of wave fronts, is presented and confirmed by numerical calculations.


Tipo de documento:Artículo
Palabras clave:Charge-density waves; Propagation; Superlattices; Existence; Dynamics; Equation; Failure; Models; Cells
Materias:Ciencias > Física > Física matemática
Código ID:15061
Referencias:

J. P. Keener, SIAM J. Appl. Math. 47, 556 (1987).

J. P. Keener and J. Sneyd, Mathematical Physiology

(Springer, New York, 1998), Chap. 9.

A. E. Bugrim, A. M. Zhabotinsky, and I. R. Epstein, Biophys.

J. 73, 2897 (1997); J. Keizer, G.D. Smith, S. Ponce

Dawson, and J. E. Pearson, Biophys. J. 75, 595 (1998).

G. Grüner, Rev. Mod. Phys. 60, 1129 (1988); A. A.

Middleton, Phys. Rev. Lett. 68, 670 (1992).

H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H.

Strogatz, Phys. Rev. Lett. 74, 174 (1995).

F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford

University Press, Oxford, 1967).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge,

UK, 1995), Chap. 10.

] M. Löcher, G.A. Johnson, and E. R. Hunt, Phys. Rev. Lett.

77, 4698 (1996).

L. L. Bonilla, J. Galán, J. A. Cuesta, F. C. Martínez, and

J. M. Molera, Phys. Rev. B 50, 8644 (1994); L. L. Bonilla,

G. Platero, and D. Sánchez, Phys. Rev. B 62, 2786 (2000);

A. Wacker, in Theory and Transport Properties of Semiconductor

Nanostructures, edited by E. Schöll (Chapman

and Hall, New York, 1998), Chap. 10.

A. Carpio, L. L. Bonilla, A. Wacker, and E. Schöll, Phys.

Rev. E 61, 4866 (2000).

K. Kladko, I. Mitkov, and A. R. Bishop, Phys. Rev. Lett.

84, 4505 (2000).

I. Mitkov, K. Kladko, and J. E. Pearson, Phys. Rev. Lett.

81, 5453 (1998).

J. R. King and S. J. Chapman (to be published).

B. Zinner, J. Differ. Equ. 96, 1 (1992); A.-M. Filip and

S. Venakides, Commun. Pure Appl. Math. 52, 693

(1999).

A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod,

Eur. J. Appl. Math. 11, 399 (2000).

J. Frenkel and T. Kontorova, Phys. Z. Sowjetunion 13, 1

(1938).

If we have ln0 # un0, such that un $ un11 2 2un 1

un21 1 F 2 Agun and ln # ln11 2 2ln 1 ln21 1 F 2

Agln, then lnt # unt for all later times. lnt and

unt are called subsolutions and supersolutions, respectively

(see Ref. [15]).

R. Hobart, J. Appl. Phys. 36, 1948 (1965).

V. L. Indenbom, Sov. Phys. Crystallogr. 3, 193 (1958).

J. B. McLeod (private communication).

L. L. Bonilla, J. Stat. Phys. 46, 659 (1987).

A. Carpio, L. L. Bonilla, and G. Dell’Acqua, Phys.

Rev. E (to be published); A. Carpio and L. L. Bonilla

(unpublished).

Depositado:03 May 2012 09:08
Última Modificación:28 Oct 2016 08:32

Sólo personal del repositorio: página de control del artículo