Complutense University Library

Wave Front Depinning Transition in Discrete One-Dimensional Reaction-Diffusion Systems

Carpio Rodríguez, Ana María and Bonilla , L.L. (2001) Wave Front Depinning Transition in Discrete One-Dimensional Reaction-Diffusion Systems. Physical Review Letters, 86 (26). ISSN 0031-9007

[img] PDF
Restricted to Repository staff only until 31 December 2020.

98kB

Official URL: http://link.aps.org/doi/10.1103/PhysRevLett.86.6034

View download statistics for this eprint

==>>> Export to other formats

Abstract

Pinning and depinning of wave fronts are ubiquitous features of spatially discrete systems describing a host of phenomena in physics, biology, etc. A large class of discrete systems is described by overdamped chains of nonlinear oscillators with nearest-neighbor coupling and controlled by constant external forces. A theory of the depinning transition for these systems, including scaling laws and asymptotics of wave fronts, is presented and confirmed by numerical calculations.

Item Type:Article
Uncontrolled Keywords:Charge-density waves; Propagation; Superlattices; Existence; Dynamics; Equation; Failure; Models; Cells
Subjects:Sciences > Physics > Mathematical physics
ID Code:15061
References:

J. P. Keener, SIAM J. Appl. Math. 47, 556 (1987).

J. P. Keener and J. Sneyd, Mathematical Physiology

(Springer, New York, 1998), Chap. 9.

A. E. Bugrim, A. M. Zhabotinsky, and I. R. Epstein, Biophys.

J. 73, 2897 (1997); J. Keizer, G.D. Smith, S. Ponce

Dawson, and J. E. Pearson, Biophys. J. 75, 595 (1998).

G. Grüner, Rev. Mod. Phys. 60, 1129 (1988); A. A.

Middleton, Phys. Rev. Lett. 68, 670 (1992).

H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H.

Strogatz, Phys. Rev. Lett. 74, 174 (1995).

F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford

University Press, Oxford, 1967).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge,

UK, 1995), Chap. 10.

] M. Löcher, G.A. Johnson, and E. R. Hunt, Phys. Rev. Lett.

77, 4698 (1996).

L. L. Bonilla, J. Galán, J. A. Cuesta, F. C. Martínez, and

J. M. Molera, Phys. Rev. B 50, 8644 (1994); L. L. Bonilla,

G. Platero, and D. Sánchez, Phys. Rev. B 62, 2786 (2000);

A. Wacker, in Theory and Transport Properties of Semiconductor

Nanostructures, edited by E. Schöll (Chapman

and Hall, New York, 1998), Chap. 10.

A. Carpio, L. L. Bonilla, A. Wacker, and E. Schöll, Phys.

Rev. E 61, 4866 (2000).

K. Kladko, I. Mitkov, and A. R. Bishop, Phys. Rev. Lett.

84, 4505 (2000).

I. Mitkov, K. Kladko, and J. E. Pearson, Phys. Rev. Lett.

81, 5453 (1998).

J. R. King and S. J. Chapman (to be published).

B. Zinner, J. Differ. Equ. 96, 1 (1992); A.-M. Filip and

S. Venakides, Commun. Pure Appl. Math. 52, 693

(1999).

A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod,

Eur. J. Appl. Math. 11, 399 (2000).

J. Frenkel and T. Kontorova, Phys. Z. Sowjetunion 13, 1

(1938).

If we have ln0 # un0, such that un $ un11 2 2un 1

un21 1 F 2 Agun and ln # ln11 2 2ln 1 ln21 1 F 2

Agln, then lnt # unt for all later times. lnt and

unt are called subsolutions and supersolutions, respectively

(see Ref. [15]).

R. Hobart, J. Appl. Phys. 36, 1948 (1965).

V. L. Indenbom, Sov. Phys. Crystallogr. 3, 193 (1958).

J. B. McLeod (private communication).

L. L. Bonilla, J. Stat. Phys. 46, 659 (1987).

A. Carpio, L. L. Bonilla, and G. Dell’Acqua, Phys.

Rev. E (to be published); A. Carpio and L. L. Bonilla

(unpublished).

Deposited On:03 May 2012 09:08
Last Modified:06 Feb 2014 10:15

Repository Staff Only: item control page