E-Prints Complutense

On convex polyhedra as regular images of R(n)

Impacto

Descargas

Último año

Fernando Galván, José Francisco y Gamboa, J. M. y Ueno, Carlos (2011) On convex polyhedra as regular images of R(n). Proceedings of the London Mathematical Society , 103 . pp. 847-878. ISSN 0024-6115

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

429kB

URL Oficial: http://plms.oxfordjournals.org/content/103/5/847.full.pdf+html


URLTipo de URL
http://www.cambridge.org/Editorial


Resumen

We show that convex polyhedra in R(n) and their interiors are images of regular maps R(n) -> R(n). As a main ingredient in the proof, given an n-dimensional, bounded, convex polyhedron K subset of R(n) and a point p is an element of R(n) \ K, we construct a semialgebraic partition {A, B, T} of the boundary partial derivative K of K determined by p, and compatible with the interiors of the faces of K, such that A and B are semialgebraically homeomorphic to an (n - 1)-dimensional open ball and J is semialgebraically homeomorphic to an (n - 2)-dimensional sphere. Finally, we also prove that closed balls in R n and their interiors are images of regular maps R(n) -> R(n).


Tipo de documento:Artículo
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15062
Depositado:03 May 2012 09:16
Última Modificación:01 Mar 2016 16:15

Descargas en el último año

Sólo personal del repositorio: página de control del artículo