Biblioteca de la Universidad Complutense de Madrid

Finite extinction and null controllability via delayed feedback non-local actions

Impacto

Díaz Díaz, Jesús Ildefonso y Casal, A.C. y Vegas Montaner, José Manuel (2009) Finite extinction and null controllability via delayed feedback non-local actions. Nonlinear analysis-theory methods & applications, 71 (12). pp. 2018-2022. ISSN 0362-546X

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

242kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0362546X09004313




Resumen

We give sufficient conditions to have the finite extinction for all solutions of linear parabolic reaction-diffusion equations of the type partial derivative u/partial derivative t - Lambda u = -M(t)u(t - tau, x) (1) with a delay term tau > 0, on Omega, an open set of R(N), M(t) is a bounded linear map on L(p)(Omega), u(t, x) satisfies a homogeneous Neumann or Dirichlet boundary condition. We apply this result to obtain distributed null controllability of the linear heat equation u(t) - Delta u = upsilon(t, x) by means of the delayed feedback term upsilon(t, x) = -M(t)u(t - tau, x).


Tipo de documento:Artículo
Palabras clave:Finite extinction time; Delayed feedback control; Linear parabolic equations
Materias:Ciencias > Matemáticas > Análisis numérico
Código ID:15071
Referencias:

E. Winston, J.A. Yorke, Linear delay differential equations whose solutions become identically zero, Rev. Roumaine Math. Pures Appl. 14 (1969) 885_887.

J.K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.

A. Casal, J.I. Diaz, J.M. Vegas, Finite extinction time via delayed feedback actions, Dyn. Contin. Discrete Impuls. Syst. Ser. A S2 (2007) 23_27.

S Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002.

K.S. Ha, Nonlinear Functional Evolutions in Banach Spaces, Kluwer, AA Dordrecht, 2003.

M.N. Özisik, Boundary Value Problems of Heat Conduction, Dover, New York, 1989.

I. Stakgold, Green's Functions and Boundary Value Problems, second edition, Wiley, New York, 1998.

A. Friedman, M.A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987) 530_546.

C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.

I.I. Vrabie, C0-Semigroups and Applications, North-Holland, Amsterdam, 2003.

Depositado:03 May 2012 08:45
Última Modificación:06 Feb 2014 10:15

Sólo personal del repositorio: página de control del artículo