E-Prints Complutense

New Family Of Estimators For The Loglinear Model Of Quasi-Independence Based On Power-Divergence Measures

Impacto

Descargas

Último año

Felipe Ortega, Ángel y Pardo Llorente, Leandro (2007) New Family Of Estimators For The Loglinear Model Of Quasi-Independence Based On Power-Divergence Measures. Journal of Statistical Computation and Simulation, 77 (5). pp. 407-420. ISSN 0094-9655

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

145kB

URL Oficial: http://www.tandfonline.com/doi/pdf/10.1080/10629360600890154


URLTipo de URL
http://www.tandfonline.comEditorial


Resumen

We study the minimum power-divergence estimator, introduced and studied by N. Cressie and T. R. C. Read [Multinomial goodness-of-fit tests. J. R. Stat. Soc., Ser. B 46, 440–464 (1984), in the loglinear model of quasi-independence.
A simulation study illustrates that minimum chi-squared estimator and Cressie-Read estimator are good alternatives to the classical maximum-likelihood estimator for this
problem.
The estimator obtained for = 2 is the most robust and efficient estimator among the family of the minimum power estimators.


Tipo de documento:Artículo
Información Adicional:

loglinear model, quasi-independence, maximum likelihood, minimum powerdivergence estimator

Palabras clave:Loglinear Model; Quasi-Independence; Maximum Likelihood; Minimum Power-Divergence Estimator;Minimum; Distance; Computer Science, Interdisciplinary Applications; Statistics & Probability
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:15086
Depositado:04 May 2012 11:34
Última Modificación:06 Feb 2014 10:16

Descargas en el último año

Sólo personal del repositorio: página de control del artículo