Complutense University Library

On a global analytic Positivstellensatz.

Acquistapace, Francesca and Broglia, Fabrizio and Fernando Galván, José Francisco (2009) On a global analytic Positivstellensatz. Arkiv för Matematik, 47 (1). pp. 13-39. ISSN 1871-2487

[img] PDF
Restricted to Repository staff only until 2020.

335kB

Official URL: http://www.arkivformatematik.org/

View download statistics for this eprint

==>>> Export to other formats

Abstract

We consider several modified versions of the Positivstellensatz for global analytic functions that involve infinite sums of squares and/or positive semidefinite analytic functions. We obtain a general local-global criterion which localizes the obstruction to have such a global result. This criterion allows us to get completely satisfactory results for analytic curves, normal analytic surfaces and real coherent analytic sets whose connected components are all compact.


Item Type:Article
Uncontrolled Keywords:Real analytic set; Analytic function; Meromorphic function; Positivstellensatz;Sums of quares; Positive semidefinite function sums of quares; positive semidefinite function
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:15098
References:

Acquistapace, F., Andradas, C. and Broglia, F., The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets, Math.Ann. 316 (2000), 609–616.

Acquistapace, F., Broglia, F., Fernando, J. F. and Ruiz, J. M., On the Pythagoras numbers of real analytic surfaces, Ann. Sci. ´ Ecole Norm. Sup. 38 (2005), 751–772.

Acquistapace, F., Broglia, F., Fernando, J. F. and Ruiz, J. M., On the Pythagoras numbers of real analytic curves, Math. Z. 257 (2007), 13–21.

Acquistapace, F., Broglia, F., Fernando, J. F. and Ruiz, J. M., On the finiteness of Pythagoras numbers of real meromorphic functions, Preprint RAAG 185,2008. http://www.maths.manchester.ac.uk/raag/index.php?preprint=0185.

Acquistapace, F., Broglia, F. and Shiota, M., The finiteness property and Lojasiewicz inequality for global semianalytic sets, Adv. Geom. 5 (2005), 377–390.

Andradas, C. and Becker, E., A note on the real spectrum of analytic functions on an analytic manifold of dimension one, in Real Analytic and Algebraic Geometry (Trento, 1988), Lecture Notes in Math. 1420, pp. 1–21, Springer, Berlin–Heidelberg, 1990.

Deposited On:04 May 2012 11:54
Last Modified:06 Feb 2014 10:16

Repository Staff Only: item control page