E-Prints Complutense

On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary

Impacto

Descargas

Último año

Díaz Díaz, Jesús Ildefonso y Rakotoson, Jean Michel Theresien (2009) On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary. Journal of Functional Analysis , 257 (3). pp. 807-831. ISSN 0022-1236

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

221kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022123609001177


URLTipo de URL
http://www.sciencedirect.com/Editorial


Resumen

We study the differentiability of very weak solutions v is an element of L(1) (Omega) of (v, L* phi)(0) = (f, phi)(0) for all phi is an element of C(2)((Omega) over bar) vanishing at the boundary whenever f is in L(1) (Omega, delta), with delta = dist(x, partial derivative Omega), and L* is a linear second order elliptic operator with variable coefficients. We show that our results are optimal. We use symmetrization techniques to derive the regularity in Lorentz spaces or to consider the radial solution associated to the increasing radial rearrangement function (f) over tilde of f.


Tipo de documento:Artículo
Palabras clave:Very weak solutions; Distance to the boundary; Regularity; Linear PDE; Monotone rearrangement; Lorentz space
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:15112
Depositado:07 May 2012 08:54
Última Modificación:06 Feb 2014 10:16

Descargas en el último año

Sólo personal del repositorio: página de control del artículo