E-Prints Complutense

On the asymptotic behaviour of solutions of a stochastic energy balance climate model

Impacto

Descargas

Último año

Díaz Díaz, Jesús Ildefonso y Langa, José A. y Valero , José (2009) On the asymptotic behaviour of solutions of a stochastic energy balance climate model. Physica D-Nonlinear Phenomena, 238 (9-10). pp. 880-887. ISSN 0167-2789

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

1MB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0167278909000657


URLTipo de URL
http://www.sciencedirect.com/Editorial


Resumen

We prove the existence of a random global attractor for the multivalued random dynamical system associated to a nonlinear multivalued parabolic equation with a stochastic term of amplitude of the order of F. The equation was initially suggested by North and Cahalan (following a previous deterministic model proposed by M.I. Budyko), for the modeling of some non-deterministic variability (as, for instance, the cyclones which can be treated as a fast varying component and are represented as a white-noise process) in the context of energy balance climate models. We also prove the convergence (in some sense) of the global attractors, when epsilon -> 0, i.e., the convergence to the global attractor for the associated deterministic case (epsilon = 0).


Tipo de documento:Artículo
Palabras clave:partial-differential equations; random dynamical-systems; stationary solutions; attractors; inclusions; climatology model; random global attractor; pullback attractor; stochastic partial differential equation
Materias:Ciencias > Matemáticas > Ecuaciones diferenciales
Código ID:15115
Depositado:07 May 2012 08:51
Última Modificación:06 Feb 2014 10:16

Descargas en el último año

Sólo personal del repositorio: página de control del artículo