E-Prints Complutense

Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model



Último año

Díaz Díaz, Jesús Ildefonso y Bermejo, R. y Carpio, Jaime y Tello, J. Ignacio (2009) Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model. Mathematical and Computer Modelling, 49 (5-6). pp. 1180-1210. ISSN 0895-7177

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.sciencedirect.com/science/article/pii/S0895717708001386

URLTipo de URL


The purpose of this paper is to carry out the mathematical and numerical analysis of a two-dimensional nonlinear parabolic problem on a compact Riemannian manifold without boundary, which arises in the energy balance for the averaged surface temperature. We use a possibly quasi-linear diffusion operator suggested by P. H. Stone in 1972. The modelling of the Budyko discontinuous coalbedo is formulated in terms of a bounded maximal monotone graph of R(2). The existence of global solutions is proved by applying a fixed point argument. Since the uniqueness of solutions may fail for the case of discontinuous coalbedo, we introduce the notion of non-degenerate solutions and show that the problem has at most one solution in this class of functions. The numerical analysis is carried out for the special case of a spherical Earth and uses quasi-uniform spherical triangles as finite elements. We study the existence, uniqueness and stability of the approximate solutions. We also show results of some long-term numerical experiments.

Tipo de documento:Artículo
Palabras clave:parabolic p-laplacian; approximation; equations; climate; nonlinear diffusive energy balance model; non-degenerate solution; finite elements; 2-sphere
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:15131
Depositado:08 May 2012 08:53
Última Modificación:06 Feb 2014 10:17

Descargas en el último año

Sólo personal del repositorio: página de control del artículo