Complutense University Library

On a problem of slender, slightly hyperbolic, shells suggested by Torroja's structures

Díaz Díaz, Jesús Ildefonso and Sánchez Palencia, Evariste (2007) On a problem of slender, slightly hyperbolic, shells suggested by Torroja's structures. Asymptotic Analysis, 52 (3-4). pp. 259-297. ISSN 0921-7134

[img] PDF
Restricted to Repository staff only until 31 December 2020.

285kB

Official URL: http://iospress.metapress.com/content/h512814106k1wk63/fulltext.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

We study the rigidification phenomenon for several thin slender bodies or shells, with a small curvature in the transversal direction to the main length, for which the propagation of singularities through the characteristics is of parabolic type. The asymptotic behavior is obtained starting with the two-dimensional Love–Kirchoff theory of plates. We consider, in a progressive study, a starting basic geometry, we pass then to consider the “V-shaped” structure formed by two slender plates pasted together along two long edges forming a small angle between their planes and, finally, we analyze the periodic extension to a infinite slab. We introduce a scalar potential φ and prove that the equation and constrains satisfied by the limit displacements are equivalent to a parabolic higher-order equation for φ. We get some global informations on φ, some on them easely associated to the different momenta and others of a different nature. Finally, we study the associate obstacle problem and obtain a global comparison result between the third component of the displacements with and without obstacle.


Item Type:Article
Uncontrolled Keywords:thin shells, V-shaped structures, asymptotic behavior, scalar potential, parabolic higher-order equations, one-side problems
Subjects:Sciences > Mathematics > Differential geometry
Sciences > Mathematics > Differential equations
ID Code:15137
References:

S. Antontsev, J.I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs

and Fluid Mechanics, Birkhäuser, Boston, 2002.

S.N. Antontsev, J.I. Díaz and H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative external field: II. The stationary Navier–Stokes problem, J. Math. Fluid Mech. 6(4) (2004), 439–461.

T. Apel, Anisotropic Finite Elements: Estimates and Applications, Teubner, Stuttgart, 1999.

M. Bernadou, Méthodes d’éléments finis pour les problèmes de coques minces, Masson, Paris, 1994.

G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1988.

H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du

temps, C. R. Acad. Sci. Paris Sér. A-B 282(17) (1976), 971–974.

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Heidelberg, 1991.

D. Caillerie, Thin elastic and periodic plates, Math. Methods Appl. Sci. 6 (1984), 159–191.

D. Caillerie and E. Sanchez Palencia, A new kind of singular stiff problems and applications to thin elastic shells, Math. Models Methods Appl. Sci. 5 (1995), 47–66.

D. Caillerie, A. Raoult and E. Sanchez Palencia, On internal and boundary layers with unbounded energy in thin shell theory. Hyperbolic characteristic and non-characteristic cases, Asymptotic Anal. 46 (2006), 189–220.

D. Caillerie, A. Raoult and E. Sanchez Palencia, On internal and boundary layers with unbounded energy in thin shell theory. Parabolic characteristic and non-characteristic cases, Asymptotic Anal. 46 (2006), 221–249.

P.G. Ciarlet, Mathematical Elasticity, Vol. II, Theory of Plates, Elsevier, Amsterdam, 1997.

P.G. Ciarlet, Mathematical Elasticity, Vol. III, Theory of Shells, Elsevier, Amsterdam, 2000.

C. De Souza, D. Leguillon and E. Sanchez Palencia, Adaptive mesh computation of a shell-like problem with singular

layers, Int. J. Multiscale Comput. Engin. 1 (2003), 401–417.

J.I. Díaz, On the formation of the free boundary for the obstacle and Stefan problems via an energy method, CD-Rom

Actas XVII CEDYA / VII CMA, L. Ferragut and A. Santos, eds, Servicio de Publicaciones de la Univ. de Salamanca, 2001.

J.I. Díaz and E. Sánchez-Palencia, Homogenization of some slender shells, work in progress.

J.I. Díaz and E. Sánchez-Palencia, On some slender shells of elliptic or hyperbolic type, work in progress.

G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.

P. Karamian and J. Sanchez Hubert, Boundary layers in thin elastic shells with developpable middle surface, Eur. J. Mech. A/Solids 21 (2002), 13–47.

W.T. Koiter, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch B73 (1970),169–195.

H. Le Dret, Modélisation d’une plaque pliée, C. R. Acad. Sci. Paris Sér I 304 (1987), 571–573.

H. Le Dret, Problèmes variationnels dans les multi-domaines, Masson, Paris, 1991.

B. Lemoine, Birkhäuser Architectural Guide Data: France 20th Century, Birkhäuser, Basel, 2000.

J.L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics,Vol. 323, Springer, Berlin, 1973.

J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer, 1972.

A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.

P.L. Nervi, Structures nouvelles, Vincent Frield & Cie, París, 1963.

F. Niordson, Shell Theory, North-Holland, Amsterdam, 1985.

G.P. Panasenko, Method of asymptotic partial decomposition of domain, Math. Models Methods Appl. Sci. 8 (1958),

139–156.

G.P. Panasenko, Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005.

J. Pitkaranta, The problem of membrane locking in finite element analysis of cylindral shells, Numer. Math. 61 (1992),523–542.

J.I. Díaz and E. Sanchez-Palencia / On slender shells and related problems 297

J. Sanchez-Hubert and E. Sanchez Palencia, Introduction aux méthods asymptotiques et àl’homogénéisation: application

à la Mécanique des Milieux Continus, Masson, Paris, 1992.

J. Sanchez-Hubert and E. Sanchez Palencia, Coques élastiques minces. Propriétés asymptotiques, Masson, Paris, 1997.

E. Sanchez Palencia, On a singular perturbation going out of the energy space, J. Math. Pures Appl. 79 (2000), 591–602.

E. Sanchez Palencia, On the structure of layers for singularly perturbed equations in the case of unbounded energy, Control Optim. Calc. Var. 8 (2002), 941–963.

E. Sanchez Palencia, Rigidification effect of a slight folding in slender plates, in: Multiscale Problems and Asymptotic Analysis, A. Piatnitski, ed., Gakkotosho 2006, to appear.

L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.

E. Torroja, The Structures of Eduardo Torroja, F.W. Dodge Corporation, New York, 1958.

E. Torroja, New developments in shell structures, in: II Symposium on Concrete Shelle Roof Construction, Oslo, 1957.

F. Treves, Basic Linear Partial Differential Equations, Academic Press, New York, 1975.

B.Z. Vlasov, Pièces longues en voiles minces, Eyrolles, Paris, 1962.

Deposited On:08 May 2012 08:49
Last Modified:06 Feb 2014 10:17

Repository Staff Only: item control page