Complutense University Library

Some Interpolation Results that are the Exclusive Property of Compact Operators

Cobos, Fernando and Fernández-Cabrera, Luz M. and Martínez, Antón and Pustylnik, Evgeniy (2002) Some Interpolation Results that are the Exclusive Property of Compact Operators. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 132 (Part 2). pp. 317-328. ISSN 0308-2105

[img] PDF
Restricted to Repository staff only until 2020.

240kB

Official URL: http://journals.cambridge.org/download.php?file=%2FPRM%2FPRM132_02%2FS0308210500001645a.pdf&code=4cbb92

View download statistics for this eprint

==>>> Export to other formats

Abstract

We show that certain interpolation results for compact operators established by Cobos and co-workers cannot be extended to general closed operator ideals. We shall
also characterize compactness of an embedding in terms of functions related to the classical K- and J -functionals of interpolation theory.

Item Type:Article
Uncontrolled Keywords:Real Interpolation; Compact Operators; Operator Ideal; Mathematics, Applied; Mathematics
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:15147
References:

J. Bergh and J. L�ofstr�om. Interpolation spaces. An introduction (Springer, 1976).

Y. Brudnyi and N. Krugljak. Interpolation functors and interpolation spaces, vol. 1 (Amsterdam: North-Holland, 1991).

F. Cobos and E. Pustylnik. On strictly singular and strictly co-singular embeddings between Banach lattices of functions. Math. Proc. Camb. Phil. Soc. 133 (2002). (In the press.)

F. Cobos, A. Manzano and A. Mart¶³ nez. Interpolation theory and measures related to operator ideals. Q. J. Math. (2) 50 (1999), 401{416.

F. Cobos, A. Manzano, A. Mart¶³ nez and P. Matos. On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proc. R. Soc. Edinb. A 130 (2000), 971{989.

F. Cobos, M. Cwikel and P. Matos. Best possible compactness results of Lions{Peetre type. Proc. Edinb.Math. Soc. 44 (2001), 153{172.

A. A. Dmitriev. The interpolation of one-dimensional operators. Vorone·zGos. Univ. Trudy Nau·cn.-Issled. Inst. Mat. VGU Vyp. 11 Sb. Statej Funkcional. Analysis i Prilozen 11 (1973), 31{43. (In Russian.)

D. E. Edmunds and H. Triebel.Functionspaces, entropynumbers anddi® erential operators(Cambridge University Press, 1996).

S. Goldberg. Unbounded linear operators (McGraw-Hill, 1966).

A. Grothendieck. Sur certain sous-espaces vectoriels de Lp . Can. J. Math. 6 (1954), 158{160.

S. Heinrich. Closed operator ideals and interpolation. J. Funct. Analysis 35 (1980), 397{411.

J. L. Lions and J. Peetre. Sur une classe d’ espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5{68.

A. Pelczy¶nski. On strictly singular and strictly co-singular operators. I and II. Bull. Acad. Polon. Sci. S¶er. Sci. Math. Astronom. Phys. 13 (1965), 31{36; 37{41.

A. Pietsch. Operator ideals (Amsterdam: North-Holland, 1980).

E. Pustylnik. On optimal interpolation and some interpolation properties of Orlicz spaces.Sov.Math. Dokl. 27 (1983), 333{336.

E. Pustylnik. Embedding functions and their role in interpolation theory. Abstract Appl. Analysis 1 (1996), 305{325.

W. Rudin. Functional analysis (McGraw-Hill, 1973).

I. Singer. Bases inBanach spaces, I (Springer, 1970).

I. Singer. Bases inBanach spaces, II (Springer, 1981).

H. Triebel. Interpolationtheory, functionspaces, di® erential operators (Amsterdam: North-Holland, 1978).

Deposited On:09 May 2012 10:25
Last Modified:06 Feb 2014 10:17

Repository Staff Only: item control page