Biblioteca de la Universidad Complutense de Madrid

Entropy Numbers of Embeddings of Besov Spaces in Generalized Lipschitz Spaces


Cobos, Fernando y Kühn, Thomas (2001) Entropy Numbers of Embeddings of Besov Spaces in Generalized Lipschitz Spaces. Journal of Approximation Theory, 112 (1). pp. 73-92. ISSN 1096-0430

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial:


We establish two-sided estimates for entropy numbers of embeddings between certain weighted Banach sequence spaces with mixed norms. These estimates are‘‘almost’’ sharp, in the sense that upper and lower bounds differ only by logarithmic terms and improve previous results by D. E. Edmunds and D. Haroske (1999,Dissertationes Math. 380, 1–43; 2000, J. Approx. Theory 104, 226–271). As an application we obtain also new upper entropy estimates for embeddings of Besovspaces in generalized Lipschitz spaces.

Tipo de documento:Artículo
Palabras clave:Entropy Numbers; Besov Spaces; Lipschitz Spaces; Complex Interpolation; Gaussian Processes; Mathematics
Materias:Ciencias > Matemáticas > Análisis funcional y teoría de operadores
Código ID:15162

J. Bergh and J. Löfström, ‘‘Interpolation Spaces,’’ Springer-Verlag, Berlin/Heidelberg/New York, 1976.

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773–789.

B. Carl, Entropy numbers of diagonal operators with an application to eigenvalue problems, J. Approx. Theory 32 (1981), 135–150.

B. Carl and I. Stephani, ‘‘Entropy, Compactness and Approximation of Operators,’’ Cambridge Univ. Press, Cambridge, UK, 1990.

D. E. Edmunds and D. Haroske, Spaces of Lipschitz type, embeddings and entropy numbers, Dissertationes Math. 380 (1999), 1–43.

D. E. Edmunds and D. D. Haroske, Embeddings in spaces of Lipschitz type, entropy and approximation numbers, and applications, J. Approx. Theory 104 (2000), 226–271.

D. E. Edmunds and H. Triebel, ‘‘Function Spaces, Entropy Numbers and Differential Operators,’’ Cambridge Univ. Press, Cambridge, UK, 1996.

F. Gao, Metric entropy of convex hulls, Israel J. Math. (2001), to appear.

Y. Gordon, H. König, and C. Schütt, Geometric and probabilistic estimates for entropy and approximation numbers of operators, J. Approx. Theory 49 (1987), 219–239.

H. König, ‘‘Eigenvalue Distribution of Compact Operators,’’ Birkhäuser, Basel, 1986.

T. Kühn, c-Radonifying operators and entropy ideals, Math. Nachr. 107 (1982), 53–58.

T. Kühn, A lower estimate for entropy numbers, J. Approx. Theory 110 (2001), 120–124.

T. Kühn and T. Schonbek, Entropy numbers of diagonal operators between vector-valued sequence spaces, J. London Math. Soc., to appear.

M. Ledoux and M. Talagrand, ‘‘Probability in Banach Spaces,’’ Springer-Verlag,Berlin/Heidelberg/New York, 1991.

H.-G. Leopold, Embeddings and entropy numbers in Besov spaces of generalized smoothness, in ‘‘Proc. Conf. Function Spaces V, Poznan,’’ 1998.

H.-G. Leopold, Embeddings for general weighted sequence spaces and entropy numbers, in ‘‘Proc. Conf. Function Spaces, Differential Operators and Nonlinear Analysis, Syöte,1999,’’ pp. 170–186, Math. Inst. Czech Republic, Prague, 2000.

W. Linde and A. Pietsch, Mappings of Gaussian cylindrical measures in Banach spaces, Teor. Verojatnost. i Primenen. 19 (1974), 472–487. [Russian; English translation in Theoret. Probab. Appl. 19 (1974), 445–460.]

A. Pietsch, ‘‘Operator Ideals,’’ VEB Deutscher Verlag der Wiss. Berlin, 1978, and North-Holland, Amsterdam/New York, 1980.

G. Pisier, ‘‘The Volume of Convex Bodies and Banach Space Geometry,’’ Cambridge Univ. Press, Cambridge, UK, 1989.20. G. Po´ lya and G. Szegö, ‘‘Aufgaben und Lehrsätze aus der Analysis,’’ Erster Band,Springer-Verlag, Berlin/New York, 1954.

C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces, J. Approx. Theory 40 (1984), 121–128.

V. N. Sudakov, Gaussian random processes, and measures of solid angles in Hilbert space, Dokl. Akad. Nauk SSSR 197(1971), 43–45. [Russian; English transl. in Soviet Math. Dokl. 12 (1971), 412–415.]

N. Tomczak-Jaegermann, Dualité des nombres d’entropie pour des opérateurs a` valeurs dans un espace de Hilbert, C. R. Acad. Sci. Paris, Ser. I 305 (1987), 299–301.

H. Triebel, ‘‘Interpolation Theory, Function Spaces, Differential Operators,’’ North-Holland, Amsterdam/New York/Oxford, 1978.

H. Triebel, ‘‘Fractals and Spectra,’’ Birkhäuser, Basel, 1997.

Depositado:10 May 2012 09:08
Última Modificación:06 Feb 2014 10:17

Sólo personal del repositorio: página de control del artículo