Biblioteca de la Universidad Complutense de Madrid

Sums of squares in real rings

Impacto

Fernando Galván, José Francisco y Ruiz Sancho, Jesús María y Scheiderer, Claus (2004) Sums of squares in real rings. Transactions of the American Mathematical Society, 356 (7). pp. 2663-2684. ISSN 0002-9947

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

337kB

URL Oficial: http://www.ams.org/journals/tran/2004-356-07/S0002-9947-03-03438-X/S0002-9947-03-03438-X.pdf




Resumen

Let A be an excellent ring. We show that if the real dimension of A is at least three then A has in finite Pythagoras number, and there exists a positive semidefinite element in A which is not a sum of squares in A.


Tipo de documento:Artículo
Palabras clave:Positive semi-definite polynomial; Excellent ring; Real spectrum; Complete local ring
Materias:Ciencias > Matemáticas > Teoría de números
Ciencias > Matemáticas > Geometria algebraica
Código ID:15168
Referencias:

C. Andradas, L. Br�ocker, J.M. Ruiz: Constructible Sets in Real Geometry. Ergeb. Math.Grenzgeb. 33. Berlin Heidelberg New York: Springer Verlag, 1996. MR 98e:14056

J. Bochnak, M. Coste, M.-F. Roy: Real Algebraic Geometry. Ergeb. Math. Grenzgeb. 36.Berlin Heidelberg New York: Springer-Verlag, 1998. MR 2000a:14067

A. Campillo, J.M. Ruiz: Some remarks on pythagorean real curve germs, J. Algebra 128,271-275 (1990).MR 91b:14072

J.W.S. Cassels, W.J. Ellison, A. Pster: On sums of squares and on elliptic curves over function elds. J. Number Theory 3, 125-149 (1971). MR 45:1863

M.D. Choi, Z.D. Dai,T.Y. Lam,B.Reznick:ThePythagoras number of some ane algebras and local algebras, J. reine angew. Math. 336, 45-82 (1982). MR 84f:12012

J.F. Fernando: Positive semidenite germs in real analytic surfaces, Math. Ann. 322,49-67(2002).MR 2003b:14069

J.F. Fernando: On the Pythagoras numbers of real analytic rings, J.Algebra 243, 321-338 (2001).MR 2002g:13051

J.F. Fernando: Analytic surface germs with minimal Pythagoras number, Preprint Univ.Complutense, Madrid 2002.

J.F. Fernando: Sums of squares in real analytic rings, Trans. Am. Math. Soc. 354,1909-1919 (2002). MR2003b:14070

J.F. Fernando, J.M. Ruiz: Positive semidenite germs on the cone, Pacic J. Math. 205,109-118 (2002). MR 2003f:14066

J.F. Fernando, J.M. Ruiz: On the Pythagoras numbers of real analytic set germs (in preparation).

T. de Jong, G. Pster: Local Analytic Geometry. Adv. Lect. Math. Braunschweig/Wiesbaden:Vieweg,2000.MR2001c:32001

H. Matsumura: Commutative Algebra, 2nd edition. London Amsterdam Tokyo: Benjamin,1980. MR 82i:13003

M. Nagata: Local Rings. New York London: John Wiley & Sons, 1962. MR 27:5790

J. Ortega: On the Pythagoras number of a real irreducible algebroid curve. Math. Ann.289, 111-123 (1991). MR 92a:14065

A. Pster: Quadratic Forms with Applications to Algebraic Geometry and Topology.London Math. Soc. Lect.Notes 217, Cambridge, 1995. MR 97c:11046

A. Prestel, C.N. Delzell: Positive Polynomials. Monographs in Mathematics. Berlin Heidelberg New York: Springer Verlag, 2001. MR 2002k:13044

R. Quarez: Pythagoras numbers of real algebroid curves and Gram matrices.J. Algebra 238,139-1582001).MR 2002g:14086

J.M. Ruiz: On Hilbert's 17th problem and real Nullstellensatz for global analytic functions.Math. Z. 190, 447-459 (1985). MR 87b:32010

J.M. Ruiz: Sums of two squares in analytic rings. Math. Z. 230, 317-328 (1999). MR 2000b:58068

C. Scheiderer: Sums of squares of regular functions on real algebraic varieties, Trans.Am. Math. Soc. 352,1039-1069 (1999).MR 2000j:14090

C. Scheiderer: On sums of squares in local rings, J. reine angew. Math. 540, 205-227(2001). MR 2002j:13031

C. Scheiderer: Sums of squares on real algebraic curves, Math. Z. (to appear)[Sch4] C. Scheiderer: Sums of squares on compact real algebraic surfaces (in preparation).

Depositado:10 May 2012 08:42
Última Modificación:06 Feb 2014 10:18

Sólo personal del repositorio: página de control del artículo