Complutense University Library

Stabilization beyond the distributions

Díaz Díaz, Jesús Ildefonso and Sánchez Palencia, Evariste (2009) Stabilization beyond the distributions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A: Matemáticas , 103 (1). pp. 167-175. ISSN 1578-7303

[img] PDF
Restricted to Repository staff only until 31 December 2020.

223kB

Official URL: http://www.springerlink.com/content/585015764r3764p6/

View download statistics for this eprint

==>>> Export to other formats

Abstract

We prove that for Suitable evolution problems, the solution u(t) corresponding to some right hand side term f(t) in V' (with V some Hilbert space). only satisfies the stabilization property (f(t) -> f(infinity) in V' implies that u(t) -> u(infinity), in V, when t -> +infinity, with u(infinity) solution of the associated stationary problem) when the space V is taken strictly larger than the distribution space. This type of problems arise, for instance, in the study of some quasi-stationary viscoelastic shell-like problems in the presence of friction effects.

Item Type:Article
Uncontrolled Keywords:stabilization; more general than distributions; like-shell problems
Subjects:Sciences > Mathematics > Differential equations
ID Code:15171
References:

BREZIS, H., (1972). Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam.

CALLERIE, D., (1996). Etude génerale d’un type de problèmes raides et de perturbation singulière, Comptes Rendus Mathématique, 323, 835–840.

DIAZ, J. I. AND S´ANCHEZ-PALENCIA, E., (2007). On slender shells and related problems suggested by Torroja’s structures, Asymptotic Analysis, 52, 259–297.

DUVAUT, G. AND LIONS, J. L., (1972). Les Inéquations en Mécanique et en Physique, Par´ıs, Dunod.

GELFAND, I. M. AND SHILOV, G., (1964). Generalized functions, Acad. Press, New York-London.

EGOROV, Y. V., MEUNIER, N. AND SANCHEZ-PALENCIA, E., (2007). Rigorus and heuristic treatment of certain sensitve singular perturbations, Journal de Math´ematiques Pures et Appliqu´ees, 88, 123–147.

HöRMANDER, L., (1985). The analysis of linear partial differential operators I-III, Springer-Verlag, Berlin.

LIONS, J. L. AND MAGENES, E., (1972). Non-homogeneous boundary value problems and applications, Springer-Verlag, New York.

MEUNIER, N., SANCHEZ-HUBERT, J. AND SANCHEZ PALENCIA, E., (2007). Various kinds of singular perturbations, Annales mathematiques Blaise Pascal, 14, 199–242.

SANCHEZ-HUBERT, J. AND SANCHEZ PALENCIA, E., (1997). Coques élastiques minces. Propriétés asymptotiques, Masson, Paris.

SCHWARTZ, L., (1950). Théorie des Distributions, Hermann, Paris.

SHOWALTER, R. E., (1996). Monotone operator in Banach space and nonlinear equations, American Mathematical Society, Philadelphia.

Deposited On:10 May 2012 08:34
Last Modified:06 Feb 2014 10:18

Repository Staff Only: item control page