Complutense University Library

On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals

Cobos, Fernando and Manzano, A. and Martínez, Antón and Matos, P. (2000) On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 130 (5). pp. 971-989. ISSN 0308-2105

[img] PDF
Restricted to Repository staff only until 2020.

268kB

Official URL: http://journals.cambridge.org/download.php?file=%2FPRM%2FPRM130_05%2FS0308210500000524a.pdf&code=9b3d4e

View download statistics for this eprint

==>>> Export to other formats

Abstract

We improve the known results on interpolation of strictly singular operators and strictly co-singular operators in several directions. Applications are given to embeddings between symmetric spaces.


Item Type:Article
Uncontrolled Keywords:Real Interpolation; Compact-Operators; Spaces; Mathematics, Applied; Mathematics
Subjects:Sciences > Mathematics > Numerical analysis
ID Code:15208
References:

A. G. Aksoy and L. Maligranda. Real interpolation and measure of weak noncompactness. Math. Nachr. 175 (1995), 5{12.

K. Astala. On measures of non-compactness and ideal variations in Banach spaces. Ann. Acad. Sci. Fenn. Math. Dissertationes A 29 (1980), 1{42.

C. Bennett and R. Sharpley. Interpolation of operators (Academic, 1988).

J. Bergh and J. L�ofstr�om. Interpolation spaces. An introduction (Springer, 1976).

O. J. Beucher. On interpolation of strictly (co-)singular linear operators. Proc. R. Soc. Edinb. A 112 (1989), 263{269.

F. Cobos and A. Mart¶³ nez. Remarks on interpolation properties of the measure of weak non-compactness and ideal variations. Math. Nachr. 208 (1999), 93{100.

F. Cobos and L.-E. Persson. Real interpolation of compact operators between quasi-Banach spaces. Math. Scand. 82 (1998), 138{160.

F. Cobos, M. Cwikel and P. Matos. Best possible compactness results of Lions{Peetre type.

Proc. Edinb. Math. Soc. 43 (2000). (In the press.)

F. Cobos, T. K�uhn and T. Schonbek. One-sided compactness results for Aronszajn Gagliardo functors. J. Funct. Analysis 106 (1992), 274{313.

F. Cobos, A. Manzano and A. Mart¶³ nez. Interpolation theory and measures related to operator ideals. Q. J. Math. (2) 50 (1999), 401{416.

M. Cwikel. Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 65 (1992), 333{343.

F. S. De Blasi. On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (1977), 259{262.

A. A. Dmitriev. The interpolation of one-dimensional operators. Vorone·z Gos. Univ. Trudy Nau·cn.-Issled. Inst. Mat. VGU Vyp. 11Sb. Statej Funkcional. Anal. i Prilozen 11(1973), 31{43.

A. Garc¶³ a del Amo, F. L. Hern¶andez and C. Ruiz. Disjointly strictly singular operators and interpolation. Proc. R. Soc. Edinb. A 126 (1996), 1011{1026.

S. Heinrich. Closed operator ideals and interpolation. J. Funct. Analysis 35 (1980), 397{411.

F. L. Hern¶andez. Disjointly strictly-singular operators in Banach lattices. Acta Univ. Carolin. Math. Phys. 31 (1990), 35{40.

F. L. Hern¶andez and B. Rodr¶³ guez-Salinas. On `p-complemented copies in Orlicz spaces. II. Israel J. Math. 68 (1989), 27{55.

S. Janson. Minimal and maximal methods of interpolation. J. Funct. Analysis 44 (1981),50{73.

A. Kami¶nska and M. Mastylo. The Dunford{Pettis property for symmetric spaces. Preprint.

T. Kato. Perturbation theory for nullity, de¯ciency and other quantities of linear operators. J. Analyse Math. 6 (1958), 261{322.

S. G. Kre·³ n, Ju. I. Petunin and E. M. Semenov. Interpolation of linear operators (Providence, RI: American Mathematical Society, 1982).

J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. Sequence Spaces, vol. 1 (Springer, 1977).

S. Ya. Novikov. Boundary spaces for inclusion map between rearrangement invariant spaces. Col lect. Math. 44 (1993), 211{215.

A. Pelczy¶nski. On strictly singular and strictly co-singular operators. Bull. Acad. Polon. Sci. S¶er. Sci. Math. Astronom. Phys. 13 (1965), 31{36; 37{41.

A. Pietsch. Operator ideals (Amsterdam: North-Holland, 1980).

E. I. Pustylnik. Embedding functions and their role in interpolation theory. Abstract Appl. Analysis 1 (1996), 305{325.

W. Rudin. Functional analysis (McGraw-Hill, 1973).

M. F. Teixeira and D. E. Edmunds. Interpolation theory and measure of non-compactness. Math. Nachr. 104 (1981), 129{135.

H. Triebel. Interpolation theory, function spaces, di® erential operators (Amsterdam: North-Holland, 1978).

H.-O. Tylli. The essential norm of an operator is not self-dual. Israel J. Math. 91 (1995), 93{110.

Deposited On:16 May 2012 09:35
Last Modified:06 Feb 2014 10:18

Repository Staff Only: item control page