Biblioteca de la Universidad Complutense de Madrid

Analytic surface germs with minimal Pythagoras number

Impacto

Fernando Galván, José Francisco (2003) Analytic surface germs with minimal Pythagoras number. Mathematische Zeitschrift, 244 (4). pp. 725-752. ISSN 0025-5874

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

303kB
[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

111kB

URL Oficial: http://www.springerlink.com/content/krjuhbn3kjn9thnl/fulltext.pdf




Resumen

We determine all complete intersection surface germs whose Pythagoras number is 2, and find that they are all embedded in R-3 and have the property that every positive semidefinite analytic function germ is a sum of squares of analytic function germs. In addition, we discuss completely these properties for mixed surface germs in R-3. Finally, we find in higher embedding dimension three different families with these same properties.


Tipo de documento:Artículo
Información Adicional:

Erratum: Analytic surface germs with minimal Pythagoras number.Mathematische Zeitschrift. 250(2005)no. 4, 967-969

Palabras clave:Positive Semidefinite Germs; Squares; Rings; Sums
Materias:Ciencias > Matemáticas > Teoría de números
Ciencias > Matemáticas > Geometria algebraica
Código ID:15229
Referencias:

Artin, M.: On the solution of analytic equations. Invent. Math. 5, 227–291 (1968)

Bochnak, J., Risler, J.-J.: Le th´eor`eme des z´eros pour les vari´et´es analytiques r´eelles de dimension 2. Ann. Sc. ´ Ec. Norm. Sup. 4e serie 8, 353–364 (1975)

Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.NewYork Berlin Heidelberg: Springer Verlag, 1999

Fernando, J.F.: On the Pythagoras numbers of real analytic rings. J. Algebra 243,321–338 (2001)

Fernando, J.F.: Positive semidefinite germs in real analytic surfaces. Math. Ann.322(1), 49–67 (2002)

Fernando, J.F.: Sums of squares in real analytic rings. Trans.AMS 354(5), 1909–1919 (2002)

Fernando, J.F., Ruiz, J.M.: Positive semidefinite germs on the cone. Pacific J. Math. 205, 109–118 (2002)

de Jong, T., Pfister, G.: Local Analytic Geometry, Basic Theory and Applications. Advanced Lectures in Mathematics. Braunschweig/Wiesbaden: Vieweg, 2000

Harris, J.:Algebraic Geometry,AFirst Course. GraduateText in Math. 133. Berlin Heidelberg NewYork: Springer Verlag, 1992

Ruiz, J.M.: The Basic Theory of Power Series. Advanced Lectures in Mathematics. BraunschweigWiesbaden: Vieweg Verlag, 1993

Ruiz, J.M.: Sums of two squares in analytic rings. Math. Z. 230, 317–328 (1999)

Scheiderer, C.: On sums of squares in local rings. J. reine angew. Math. 540, 205–227 (2001)

Stanley, R.: Hilbert functions of gradded algebras. Adv. inMath. 28, 57–83 (1978)

Depositado:17 May 2012 09:46
Última Modificación:06 Feb 2014 10:19

Sólo personal del repositorio: página de control del artículo