Complutense University Library

Positive semidefinite germs on the cone

Fernando Galván, José Francisco and Ruiz Sancho, Jesús María (2002) Positive semidefinite germs on the cone. Pacific Journal of Mathematics, 205 (1). pp. 109-118. ISSN 0030-8730

[img] PDF
Restricted to Repository staff only until 2020.

150kB

Official URL: http://msp.berkeley.edu/pjm/2002/205-1/pjm-v205-n1-p05-s.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

We show that any positive semidefinite analytic function germ on the cone z(2) = x(2) + y(2) is a sum of two squares of analytic function germs.

Item Type:Article
Uncontrolled Keywords:Analytic function germs
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
Sciences > Mathematics > Algebraic geometry
ID Code:15235
References:

C. Andradas, L. Br¨ocker and J.M. Ruiz, Constructible Sets in Real Geometry,Ergeb. Math., 33, Springer Verlag, Berlin-Heidelberg-New York, 1996,MR 98e:14056, Zbl 0873.14044.

S.Basarab, V. Nica and D. Popescu,Approximation properties and existencial completeness for ring morphisms, Manuscripta Math., 33 (1981), 227-282,MR 82k:03047, Zbl 0472.13013.

M.D. Choi, Z.D. Dai, T.Y. Lam and B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math., 336 (1982),45-82, MR 84f:12012, Zbl 0523.14020.

P. Jaworski, About estimates on mumber of squares necessary to represent a positive-semidefinite analytic function, Arch. Math., 58 (1992), 276-279,MR 93c:32008, Zbl 0748.14021.

J.Ortega, On the Pythagoras number of a realirreducible algebroid curve, Math.Ann., 289 (1991), 111-123, MR 92a:14065, Zbl 0743.14041.

G. P´olya and G. Szeg¨o, Problems and Theorems in Analysis I & II,Springer Study Edition, Springer Verlag, New York-Heidelberg-Berlin, 1976,MR 49 #8782, MR 53 #2.

R. Quarez, Pythagoras numbers of real algebroid curves and Gram matrices, J.Algebra, 238(1) (2001), 139-158.

J.M. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics,Vieweg Verlag, Braunschweig Wiesbaden, 1993, MR 94i:13012.

Sums of two squares in analytic rings, Math. Z., 230 (1999), 317-328,Zbl 0930.32007.

R.J. Walker, Algebraic Curves, Springer Verlag, Berlin-Heidelberg-New York,

Deposited On:17 May 2012 08:45
Last Modified:06 Feb 2014 10:19

Repository Staff Only: item control page