E-Prints Complutense

Convergence of polynomial level sets.



Último año

Ferrera Cuesta, Juan (1998) Convergence of polynomial level sets. Transactions of the American Mathematical Society, 350 (12). 4757-4773.. ISSN 0002-9947

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.


URL Oficial: http://www.ams.org/journals/tran/1998-350-12/S0002-9947-98-02342-3/S0002-9947-98-02342-3.pdf

URLTipo de URL


In this paper we give a characterization of pointwise and uniform convergence of sequences of homogeneous polynomials on a Banach space by means of the convergence of their level sets. Results are obtained both in the real and the complex cases, as well as some generalizations to the nonhomogeneous case and to holomorphic functions in the complex case. Kuratowski convergence of closed sets is used in order to characterize pointwise convergence. We require uniform convergence of the distance function to get uniform convergence of the sequence of polynomials.

Tipo de documento:Artículo
Palabras clave:Polynomials in Banach spaces; Set convergence; Level sets; Sequences of homogeneous polynomials on a Banach space
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:15271
Depositado:18 May 2012 08:56
Última Modificación:06 Feb 2014 10:20

Descargas en el último año

Sólo personal del repositorio: página de control del artículo