Lupianez, Francisco Gallego
(2009)
*Interval neutrosophic sets and topology.*
Kybernetes, 38
(3/4).
pp. 621-624.
ISSN 0368-492X

Official URL: http://fs.gallup.unm.edu/INeutrosophicSet-Topology.pdf

## Abstract

Purpose - In 2005, Smarandache generalized the Atanassov's intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs), which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the non-standard interval is also due to Smarandache. The purpose of this paper is to study relations between INSs and topology. Design/methodology/approach - The paper investigates the possible relations between INSs and topology. Findings - Relations on INSs and neutrosophic topology. Research limitations/implications - Clearly, the paper is confined to IFSs and NSs. Practical implications - The main applications are in the mathematical field. Originality/value - The paper shows original results on fuzzy sets and topology.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Cybernetics; Fuzzy logic; Set theory; Topology |

Subjects: | Sciences > Mathematics > Logic, Symbolic and mathematical Sciences > Mathematics > Cybernetics Sciences > Mathematics > Topology |

ID Code: | 15275 |

References: | K.T. Atanassov, Intuitionistic fuzzy sets, paper presented at the VII ITKR’s Session, Sofia (June 1983). K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20,1986, pp. 87-96. K.T. Atanassov, Review and new results on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia(1988). S.Bayhan and D.C¸ oker, On T1 and T2 separation axioms in intuitionistic fuzzy topological spaces , J. Fuzzy Math. 11, 2003, pp. 581-592. D.C¸ oker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4, 1996, pp. 749-764. D.C¸ oker, An introduction to intuitionistic fuzzy topologial spaces, Fuzzy Sets and Systems,88,1997, pp. 81-89. D.C¸ oker and A.H. Es¸, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3, 1995, pp. 899-909. A.H.Es¸ and D.C¸ oker, More on fuzzy compactness in intuitionistic fuzzy topological spaces, Notes IFS, 2 , no1, 1996, pp. 4-10. H.G¨urc¸ay, D.C¸ oker, and A.H.Es¸, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5, 1997, pp. 365-378. J.H.Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czech. Math. J. 53 (128), 2003, pp.793-803. K.Hur, J.H.Kim, and J.H.Ryou, Intuitionistic fuzzy topologial spaces”, J. Korea Soc. Math. Educ., Ser B, 11, 2004, pp. 243-265. S.J.Lee and E.P.Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math.Soc., 37, 2000, pp. 63-76. F.G.Lupi´a˜nez, Hausdorffness in intuitionistic fuzzy topological spaces, J. Fuzzy Math.12, 2004, pp. 521-525. F.G.Lupi´a˜nez, Separation in intuitionistic fuzzy topological spaces, Intern. J. Pure Appl. Math. 17, 2004, pp. 29-34. F.G.Lupi´a˜nez, Nets and filters in intuitionistic fuzzy topological spaces, Inform. Sci. 176, 2006 , pp.2396-2404. F.G.Lupi´a˜nez, On intuitionistic fuzzy topological spaces, Kybernetes, 35, 2006, pp. 743-747. F.G.Lupi´a˜nez, Covering properties in intuitionistic fuzzy topological spaces, Kybernetes, 36, 2007, pp. 749-753. F.G.Lupi´a˜nez, On Neutrosophic Topology, Kybernetes (to appear)37, 2008, 797-800. A.Robinson, Non-standard Analysis, Princeton University Press, Princeton, NJ.1996 F.Smarandache, A unifying field in Logics: Neutrosophic Logic, Multiple-Valued Logic, 8, 2002, pp. 385-438. F.Smarandache, Definition of Neutrosophic Logic. A generalization of the intuitionistic fuzzy Logic, Proc. 3rd Conf. Eur. Soc. Fuzzy Logic Tech. [EUSFLAT, 2003], pp.141-146. F.Smarandache, Neutrosophic set. A generalization of the intuitionistic fuzzy set, Intern. J. Pure Appl. Math. 24, 2005, pp. 287-297. N.Turanh and D.C¸ oker, Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 116, 2000, pp. 369-375. H.Wang, F.Smarandache, Y.-Q.Zhang, and R.Sunderraman, Interval neutrosophic sets and Logic: Theory and Applications in Computing, Hexis, Phoenix, AZ.2005 Proceedings of the 13th WSEAS International Conference on APPLIED MATHEMATICS (MATH'08) |

Deposited On: | 21 May 2012 10:53 |

Last Modified: | 29 Oct 2013 19:01 |

Repository Staff Only: item control page