Biblioteca de la Universidad Complutense de Madrid

The asymptotic values of a polynomial function on the real plane.

Impacto

Ferrera Cuesta, Juan y Puente Muñoz, María Jesús de la (1996) The asymptotic values of a polynomial function on the real plane. Journal of Pure and Applied Algebra , 106 (3). pp. 263-273. ISSN 0022-4049

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020.

800kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/0022404995000259




Resumen

Let a polynomial function f of two real variables be given. We prove the existence of a finite number of unbounded regions of the real plane along which the tangent planes to the graph of f tend to horizontal position, when moving away from the origin. The real limit values of this function on these regions are called asymptotic values. We also define the real critical values at infinity of f and prove the theorem of local trivial fibration at infinity, away from these values.


Tipo de documento:Artículo
Palabras clave:Complex-Variables
Materias:Ciencias > Matemáticas > Análisis matemático
Código ID:15289
Referencias:

J. Bochnak, M. Coste, M.F. Roy, Gtomdtrie algebrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 12 (Springer, Berlin, 1987).

N. Bourbaki, Elements of Mathematics, General Topology, part 1 (Addison-Wesley, Reading, Mass., 1966).

A. Durfee, N. Kronenfeld, H. Munson, J. Roy, I. Westby, Counting critical points of real polynomials in two variables, Amer. Math. Mon. 100(3), (1993), 255-271.

L. Fourrier, Entrelacs a l’infini et types topologiques des polynomes de deux variables complexes, These, University Paul Sabatier de Toulouse, 1993.

H.V. Ha, Sur la fibration globale des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 309, serie I (1989) 231-234.

H.V. Ha, Nombres de Lojasiewicz et singularitis a l’infini des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 311, serie I (1990) 429-432.

H.V. Ha, D.T. Lt, Sur la topologie des polynomes complexes, Acta Math. Viet., 9(l) (1984) 21-32.

H.V. Ha, L.A. Nguyen, Le comportement geomitrique a l’infini des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 309, serie I (1989) 183-186.

S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994) 1-4.

M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1267, (Springer, Berlin, 1980).

Depositado:21 May 2012 09:57
Última Modificación:20 Ene 2016 15:29

Sólo personal del repositorio: página de control del artículo