Complutense University Library

Nets and filters in intuitionistic fuzzy topological spaces.

Lupianez, Francisco Gallego (2006) Nets and filters in intuitionistic fuzzy topological spaces. Information Sciences, 176 (16). pp. 2396-2404. ISSN 0020-0255

[img] PDF
Restricted to Repository staff only until 2020.

140kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0020025505001775

View download statistics for this eprint

==>>> Export to other formats

Abstract

The basic concept of intuitionistic fuzzy point has been defined by C¸ oker and Demirci.
Also, C¸ oker constructed the fundamental theory on intuitionistic fuzzy topological spaces. In this paper, we define the notions of net and filter in the intuitionistic fuzzy sense, and obtain some results on convergence, in particular we establish the correspondence between net convergence and filter convergence in the intuitionistic fuzzy sense.

Item Type:Article
Uncontrolled Keywords:Intuitionistic fuzzy points; Fuzzy nets; Fuzzy filters; Intuitionistic topology; Convergence; Continuity
Subjects:Sciences > Mathematics > Topology
ID Code:15298
References:

K.T. Atanassov, Intuitionistic fuzzy sets, in: VII ITKR's Session, Sofia, June 1983.

K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96.

K.T. Atanassov, Review and new results on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, 1988.

K.T. Atanassov, Intuitionistic Fuzzy Sets. Theory and Applications, Springer-Verlag, Heidelberg, New York, 1999

D. C¸ oker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst. 88 (1997) 81–89.

D. C¸ oker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996) 749–764.

D. C¸ oker, M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (2) (1995) 79–84.

D. C¸ oker, M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostaks sense, Busefal 67 (1996) 61–66.

D. C¸ oker, M. Demirci, On fuzzy inclusion in the intuitionistic sense, J. Fuzzy Math. 4 (1996) 701–714.

D. C¸ oker, A.H. Es, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995) 899–909.

A.H. Es, D. C¸ oker, More on fuzzy compactness in intuitionistic fuzzy topological spaces, Notes IFS 2 (1) (1996) 4–10.

A.H. Es, D. C¸ oker, On several types of degree of fuzzy compactness, Fuzzy Sets Syst. 87 (1997) 349–359.

H. Gu¨rc¸ay, D. C¸ oker, A.H. Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997) 365–378.

S. O¨ zc¸agˇ, D. C¸ oker, On connectedness in intuitionistic fuzzy special topological spaces, Internat. J. Math. & Math. Sci. 21 (1998) 33–40.

N. Turanh, D. C¸ oker, On some types of fuzzy connectedness in fuzzy topological spaces, Fuzzy Sets Syst. 60 (1993) 97–102.

E. Coskun, Systems on intuitionistic fuzzy special sets and intuitionistic fuzzy special measures, Inform. Sci. 128 (2000) 105–118.

W.-L. Hung, J.-W. Wu, Correlation of intuitionistic fuzzy sets by centroid method, Inform. Sci. 114 (2002) 219–225.

Seok Jong Lee, Eun Pyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37 (2000) 63–76.

R. Lowen, Convergence in fuzzy topological spaces, in: Gen. Topology rel. mod. Anal. Alg. IV (Proc. 4th Prague Topolog. Symp., 1976) part B, Soc. Czech. Math. Phys., Praha, 1977, pp. 254–259.

K.K. Mondal, S.K. Samanta, A study on intuitionistic fuzzy topological spaces, Notes IFS 9 (2003) 1–32.

P.-M. Pu, Y.-M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore– Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.

G.-J. Wang, Y.Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets Syst. 110 (2000) 271–274.

Deposited On:21 May 2012 10:16
Last Modified:06 Feb 2014 10:21

Repository Staff Only: item control page