Complutense University Library

Period Matrices Of Accola-Maclachlan And Kulkarni Surfaces


Gamboa Mutuberria, José Manuel and Bujalance, E. and Costa Gonzalez, A.F. and Riera, G. (2000) Period Matrices Of Accola-Maclachlan And Kulkarni Surfaces. Annales Academiae , 25 (1). pp. 161-177. ISSN 1239-629X

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


We compute the period matrices of the Riemann surfaces given by the equations w2 = z2g+2

Item Type:Article
Uncontrolled Keywords:Jacobian Variety; Torelli’s Theorem; Period Matrix; Accola-Maclachlan Surfaces; Kulkarni Surfaces
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:15323

Accola, R.D.M.: On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131, 1968, 398{408.

Bolza, O.: On binary sextics with linear transformations into themselves. Amer. J.Math. 10, 1888, 47{60.

Broughton, A., E. Bujalance, A.F. Costa, J.M. Gamboa, and G. Gromadzki: Symmetries of Accola{Maclachlan and Kulkarni surfaces.Proc. Amer. Math. Soc. 127, 1999, 637{646.

Bujalance, E., and M. Conder: On cyclic groups of automorphisms of Riemann surfaces.Preprint.

Berry, K., and M. Tretkoff: The period matrix of Macbeath's curve of genus seven. Contemp. Math. 136, 1992, 31{40. [C] Comessatti, H.: Sulla varieta prima abeliane reali I and II. - Ann. Mat. Pura Appl. 2, 1924, 67{106.

Gross, B.H., and J. Harris: Real algebraic curves. Ann. Sci.Ecole Norm. Sup. (4) 14, 1981, 157{182.

Kulkarni, R.S.: A note on Wiman and Accola{Maclachlan surfaces. Ann. Acad. Sci.Fenn. Math. 16, 1991, 83{94.

Kuusalo, T., and M. Naatanen: Geometric uniformization in genus 2. Ann. Acad. Sci. Fenn. Math. 20, 1995, 401{418.

Maclachlan, C.: A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44, 1969, 265{272.

Rauch, H.E., and J. Lewittes: The Riemann surface of Klein with 168 automorphisms. Problems in Analysis, Papers Dedicated to Salomon Bochner, 1969, Princeton Univ. Press, Princeton, N.J., 1970, 297{308.

Riera, G.: Automorphisms of Abelian varieties associated with Klein surfaces. J. London Math. Soc. (2) 51, 1995, 442{452.

Riera, G., and R.E. Rodriguez: Riemann surfaces and abelian varieties with an automorphism of prime order.Duke Math. J. 69:1, 1993, 199{217.

Shimura, G.: On the real points of arithmetic quotient of a bounded symmetric domain. Math. Ann. 215, 1975, 135{164.

Schiller, J.: Riemann matrices for hyperelliptic surfaces with involutions other than the interchange of sheets.Michigan Math. J. 15, 1968, 283{287.

Schiller, J.: A classication of hyperelliptic Riemann surfaces with automorphisms by means of characteristic Riemann matrices. Michigan Math. J. 18, 1971, 169{186.

Schindler, B.: Period matrices of hyperelliptic curves.

Manuscripta Math. 78, 1993, 369{380.

Siegel, C.L.: Algebras of Riemann Matrices.Tata Institute of Fundamental Research. Lecture on Mathematics and Physics, Tate Institute Bombay, 1956.

Silhol, R.: Normal forms of period matrices of real curves of genus 2 and 3.

Seppala, M., and R. Silhol: Moduli spaces for real algebraic curves and real abelian varieties.Math. Z. 201, 1989, 151{165.

Watson, P.: Symmetries and large abelian automorphism groups. Preprint.

Weyl, H.: On generalized Riemann Surfaces. Ann. of Math. 35, 1934, 714{729.

Deposited On:23 May 2012 08:58
Last Modified:06 Feb 2014 10:21

Repository Staff Only: item control page