Lupianez, Francisco Gallego
(1998)
*Fuzzy perfect maps and fuzzy paracompactness.*
Fuzzy Sets and Systems, 98
(1).
pp. 137-140.
ISSN 0165-0114

PDF
Restringido a Repository staff only hasta 2020. 266kB |

Official URL: http://www.sciencedirect.com/science/article/pii/S0165011496003533

## Abstract

In this paper we prove that S-paracompactness, S*-paracompactness, fuzzy paracompactness, and .-fuzzy paracompactness are invariants and inverse invariants of various types of fuzzy perfect maps.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Fuzzy perfect map; S-paracompactness; S*-paracompactness; fuzzy |

Subjects: | Sciences > Mathematics > Logic, Symbolic and mathematical |

ID Code: | 15330 |

References: | A. Biilbiil and M.W. Warner, On the goodness of some types of fuzzy paracompactness, Fuzzy Sets and Systems 55 (1993) 187-191. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190. F.T. Christoph, Quotient fuzzy topology and local compactness, J. Math. Anal. Appl. 57 (1977) 497-504. M.E.A. El-Monsef, F.M. Zeyada, S.N. E1-Deeb and I.M. Hanafy, Good extensions of paracompactness, Math. Japon 37 (1992) 195-200. B. Ghosh, Directed family of fuzzy sets and fuzzy perfect maps, Fuzzy Sets and Systems 75 (1995) 93-101. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal Appl. 56 (1976) 621-633. R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. AppL 64 (1978) 446-454. M.K. Luo, Paracompactness in fuzzy topological spaces, J. Math. Anal. Appl. 130 (1988) 55-77. P.-M. Pu and Y.-M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. AppL 76 (1980) 571-599. R. Srivastava and S.N. Lal, On fuzzy proper maps, Mat. Vesnik 38 (1986) 337-342. C.K. Wong, Fuzzy topology: product and quotient theorems, J.Math. Anal AppL 45 (1974) 512-521. |

Deposited On: | 23 May 2012 09:26 |

Last Modified: | 06 Feb 2014 10:22 |

Repository Staff Only: item control page