Complutense University Library

Symmetries Of Accola-Maclachlan And Kulkarni Surfaces

Gamboa Mutuberria, José Manuel and Broughton, SA and Bujalance, E. and Costa, F.A. and Gromadzki, G. (1999) Symmetries Of Accola-Maclachlan And Kulkarni Surfaces. Proceedings of the American Mathematical Society, 127 (3). pp. 637-646. ISSN 0002-9939

[img] PDF
Restricted to Repository staff only until 2020.

260kB

Official URL: http://www.ams.org/journals/proc/1999-127-03/S0002-9939-99-04534-7/S0002-9939-99-04534-7.pdf

View download statistics for this eprint

==>>> Export to other formats

Abstract

For all g 2 there is a Riemann surface of genus g whose automorphism group has order 8g+8, establishing a lower bound for the possible orders of automorphism groups of Riemann surfaces. Accola and Maclachlan established the existence of such surfaces; we shall call them Accola-Maclachlan surfaces. Later Kulkarni proved that for suciently large g the Accola-Maclachlan surface was unique for g = 0;1; 2 mod 4 and produced exactly one additional
surface (the Kulkarni surface) for g = 3 mod 4. In this paper we determine the symmetries of these special surfaces, computing the number of ovals and the separability of the symmetries. The results are then applied to classify the real forms of these complex algebraic curves. Explicit equations of these real forms of Accola-Maclachlan surfaces are given in all but one case.

Item Type:Article
Uncontrolled Keywords:Orders Of Automorphism Groups Of Riemann Surfaces; Kulkarni Surface; Number Of Ovals; Symmetries; Real Forms Of Accola-Maclachlan Surfaces
Subjects:Sciences > Mathematics > Algebraic geometry
ID Code:15339
References:

Accola R. D. M.: On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398{408. MR 36:5333

Broughton S. A., Bujalance E., Costa A. F., Gamboa J. M., Gromadzki G.: Symmetries of Riemann surfaces on which PSL(2; q) acts as Hurwitz automorphism group. J. Pure Appl. Alg. 106 (1996) 113-126. MR 97e:14043

Bujalance E., Costa A. F.: A combinatorial approach to the symmetries of M and M − 1 Riemann surfaces, Lecture Notes Series 173 London Math. Soc. (1992), 16-25. MR 93k:30075

Gromadzki G.: Groups of Automorphisms of Compact Riemann and Klein Surfaces. Habilitazionschrift. University Press WSP Bydgoszcz (1993).

Harnack A.: ¨Uber die Vieltheiligkeit der ebenen algebraischen Kurven. Math. Ann. 10 (1876),189{199.

Hoare A. H. M., Singerman D.: Subgroups of plane groups. London Math. Soc. Lect. Note Series 71 (1982), 221{227. MR 85g:20061

Hurwitz A.: ¨Uber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann.41 (1893), 402{442.

Kulkarni R. S.: A note on Wiman and Accola-Maclachlan surfaces. Ann. Acad. Sci. Fenn. 16(1991), 83{94. MR 92j:30045

Macbeath A. M.: On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5 (1961), 90{96. MR 26:4244

Macbeath A. M.: Discontinuous groups and birational transformations. Proc. of Dundee Summer School, Univ. of St. Andrews (1961).

Macbeath A. M.: Action of automorphisms of a compact Riemann surface on the rst homology. Bull. London Math. Soc. 5 (1973), 103{118. MR 47:8840

Maclachlan C.: A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265{272. MR 38:4674

Nakagawa K.: On the orders of automorphisms of a closed Riemann surface. Pacic J. Math. 115 (1984), 435{443. MR 86a:30073

Natanzon S. M.: Automorphisms of the Riemann surface of an M-curve. Funktsional Anal. i Priloz. 12:3 (1978), 82{83. (Functional Anal. Appl. 12 (1978), 228{229.) MR 82b:14020 646 S. A. BROUGHTON ET AL.

Singerman D.: Automorphisms of compact non-orientable Riemann surfaces. Glasgow Math. J. 12 (1971), 50{59. MR 45:5347

Weichold G.: ¨Uber symmetrische Riemanns'che Fl¨achen und die Periodicit¨asmoduln der zugeh¨orin Abel'schen Normalintegrale erster Gattung. Zeitschrift f¨ur Math. und Phys. 28 (1883), 321{351.

Deposited On:24 May 2012 09:44
Last Modified:06 Feb 2014 10:22

Repository Staff Only: item control page