Complutense University Library

Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars

Folgueira, Marta and Souchay, J. (2005) Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars. Astronomy & Astrophysics, 432 (3). pp. 1101-1113. ISSN 0004-6361

[img] PDF
Restricted to Repository staff only until 2020.

524kB

Official URL: http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361:20041312&Itemid=129

View download statistics for this eprint

==>>> Export to other formats

Abstract

The purpose of this paper is to show how to solve in Hamiltonian formalism the equations of the polar motion of any arbitrarily shaped elastic celestial body, i.e. the motion of its rotation axis ( or angular momentum) with respect to its figure axis. With this aim, we deduce from canonical equations related to the rotational Hamiltonian of the body, the analytical solution for its free polar motion which depends both on the elasticity and on its moments of inertia. In particular, we study the influence of the phase angle delta, responsible for the dissipation, on the damping of the polar motion. In order to validate our analytical equations, we show that, to first order, they are in complete agreement with those obtained from the classical Liouville equations. Then we adapt our calculations to the real data obtained from the polar motion of the Earth (polhody). For that purpose, we characterize precisely the differences in radius J - chi and in angle l - theta between the polar coordinates (chi, theta) and ( J, l) representing respectively the motion of the axis of rotation of the Earth and the motion of its angular momentum axis, with respect to an Earth-fixed reference frame, after showing the influence of the choice of the origin on these coordinates, and on the determination of the Chandler period as well. Then we show that the phase lag delta responsible for the damping for the selected time interval, between Feb. 1982 and Apr. 1990, might be of the order of delta approximate to 6degrees, according to a numerical integration starting from our analytical equations. Moreover, we emphasize the presence in our calculations for both. and., of an oscillation with a period T(Chandler)/2, due to the triaxial shape of our planet, and generally not taken into account. In a last step, we apply our analytical formulation to the polar motion of Mars, thus showing the high dependence of its damping on the poorly known value of its Love number k. Moreover we emphasize the large oscillations of Mars' polar motion due to the triaxiality of this planet.


Item Type:Article
Uncontrolled Keywords:Methods : analytical; solar system : general
Subjects:Sciences > Mathematics > Astronomy
ID Code:15350
References:

Bois, E., Boudin, F., & Journet, A. 1996, A&A, 314, 989

Bouquillon, S., & Souchay, J. 1999, A&A, 345, 282

Dehant, V., Arias, F., Bizouard, Ch., et al. 1999, Celest. Mech., 72(4),245

Folkner, W. M., Yoder, C. F., Yuan, D. N., et al. 1997, Science, 278

Gauchez, D., & Souchay, J. 2000, Earth, Moon and Planets, 84, 33

Getino, J., & Ferrándiz, J. M. 1990, Celest. Mech., 49, 303

Getino, J., & Ferrándiz, J. M. 1991, Celest. Mech., 51, 17

Groten, E. 2000, J. Geodesy, 74-1, 134

Höpfner, J. 2003, J. Geodesy, 77, 388

Höpfner, J. 2004, Surveys Geophys., 25, 1

Kinoshita, H. 1972a, Publ. Astron. Soc. Japan, 24, 409

Kinoshita, H. 1972b, Publ. Astron. Soc. Japan, 24, 423

Kinoshita, H. 1977, Celest. Mech., 15, 277

Kinoshita, H. 1992, Celest. Mech., 53, 365

Kubo, Y. 1991, Celest. Mech., 50, 165

Lambeck, K. 1980, The Earth’s variable rotation (Cambridge University Press)

Lambeck, K. 1988, Geophysical Geodesy. The slow deformations of the Earth (Oxford: Clarendon Press)

Mathews, P. M., Herring, T. A., & Buffett, B. A. 2002, J. Geophys.Res., 107, B4

McCarthy, D., & Petit, G. 2003, IERS Conventions 2003, IERS Technical Notes 32

Moritz, H., & Mueller, I. I. 1987, Earth rotation: Theory and Observation (New York: The Ungar Publishing Company)

Munk, W. H., & MacDonald, G. J. F. 1975, The rotation of the Earth: A geophysical discussion (Cambridge University Press)

Nastula, J., & Ponte, R. M. 1999, Geophys. J. Int., 139, 123

Okubo, S. 1982, J. Geophys. J. R. Astr. Soc., 71, 647

Sevilla, M. J., & Romero, P. 1985, in Proc. of I Hotine-Marussi Symposium on Mathematical Geodesy, 703

Smith,M. L., & Dahlen, F. A. 1981, Geophys. J. R. Astr. Soc., 64, 223

Souchay, J., Folgueira, M., & Bouquillon, S. 2003, Earth, Moon and Planets, 93, 107

Stavinschi, M., & Souchay, J. 1994, in Proc. of Journées, Systèmes de Référence spatio-temporels, 81

Van Hoolst, T., & Dehant, V. 2002, Physics of the Earth and Planetary Interiors, 134, 17

Widmer, R., Masters, G., & Gilbert, F. 1991, Geophys. J. Int., 104,541

Williams, J. G., Sinclair, W. S., & Yoder, C. F. 1978, Geophys. Res.Lett. 5, 11, 943

Yoder, C.F., & Standish, E. M. 1997, J. Geophys. Res., 102(2), 4065

Deposited On:24 May 2012 08:20
Last Modified:06 Feb 2014 10:22

Repository Staff Only: item control page