E-Prints Complutense

On Prime Ideals In Rings Of Semialgebraic Functions



Último año

Gamboa, J. M. (1993) On Prime Ideals In Rings Of Semialgebraic Functions. Proceedings of the American Mathematical Society, 118 (4). pp. 1037-1041. ISSN 0002-9939

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.


URL Oficial: http://www.ams.org/journals/proc/1993-118-04/S0002-9939-1993-1140669-6/S0002-9939-1993-1140669-6.pdf

URLTipo de URL


It is proved that if p is a prime ideal in the ring S{M) of semialgebraic functions on a semialgebraic set M, the quotient field of S(M)/p is real closed. We also prove that in the case where M is locally closed, the rings S(M) and P(M)—polynomial functions on M—have the same Krull dimension.
The proofs do not use the theory of real spectra.

Tipo de documento:Artículo
Palabras clave:Prime Ideal In The Ring Of Semialgebraic Functions; Krull Dimension
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15368
Depositado:25 May 2012 09:13
Última Modificación:02 Mar 2016 14:27

Descargas en el último año

Sólo personal del repositorio: página de control del artículo