Complutense University Library

A simulation study of a discrete-time multiserver retrial queue with finite population

Artalejo, Jesús R. and Lopez-Herrero, M. J. (2007) A simulation study of a discrete-time multiserver retrial queue with finite population. Journal of Statistical Planning and Inference , 137 (8). pp. 2536-2542. ISSN 0378-3758

[img] PDF
Restricted to Repository staff only until 31 December 2020.

153kB

Official URL: http://www.sciencedirect.com/science/article/pii/S0378375807000092

View download statistics for this eprint

==>>> Export to other formats

Abstract

In this paper, we deal with a discrete-time multiserver retrial queue with finite population. Firstly, we study the Markov chain at the epochs immediately after slot boundaries making emphasis on the computation of its steady-state distribution. Then, the main performance measures are investigated. Besides, we simulate the waiting time of a customer in the retrial group under three different queueing policies. Some numerical examples are given to illustrate the analysis.


Item Type:Article
Uncontrolled Keywords:Discrete-time queues; Multiple servers; Retrials; Simulation; Steady-state distribution; Waiting time
Subjects:Sciences > Mathematics > Operations research
ID Code:15375
References:

Artalejo, J.R., 1999. Accessible bibliography on retrial queues. Math. Comput. Modelling 30, 1–6.

Artalejo, J.R., Hernandez-Lerma, O., 2003. Performance analysis and optimal control of the Geo/Geo/c queue. Performance Evaluation 52, 15–39.

Artalejo, J.R., Pozo, M., 2002. Numerical calculation of the stationary distribution of the main multiserver retrial queue. Ann. Oper. Res. 116, 41–56.

Artalejo, J.R., Atencia, I., Moreno, P., 2005. A discrete-time Geo[X]/G/1 retrial queue with control of admission. Appl. Math. Modelling 29, 1100–1120.

Atencia, I., Moreno, P., 2004a. Discrete-time Geo[X]/GH /1 retrial queue with Bernoulli feedback. Comput. Math. Appl. 47, 1273–1294.

Atencia, I., Moreno, P., 2004b. A discrete-time Geo/G/1 retrial queue with general retrial times. Queueing Systems 48, 5–21.

Bruneel, H., Kim, B.G., 1993. Discrete-time Models for Communication Systems including ATM. Kluwer Academic Publishers, Boston.

Choi, B.D., Kim, J.W., 1997. Discrete-time Geo1, Geo2/G/1 retrial queueing system with two types of calls. Comput. Math. Appl. 33, 79–88.

Falin, G.I., Artalejo, J.R., 1998. A finite source retrial queue. European J. Oper. Res. 108, 409–424.

Falin, G.I., Templeton, J.G.C., 1997. Retrial Queues. Chapman & Hall, London.

Gao, P.,Wittevrongel, S., Bruneel, H., 2004. Discrete-time multiserver queues with geometric services times. Comput. Oper. Res. 31, 81–99.

Li, H.,Yang, T., 1998. Geo/G/1 discrete time retrial queue with Bernoulli schedule. European J. Oper. Res. 111, 629–649.

Li, H.,Yang, T., 1999. Steady-state queue size distribution of discrete-time PH/Geo/1 retrial queues. Math. Comput. Modelling 30, 51–63.

Takahashi, M., Osawa, H., Fujisawa, T., 1999. Geo[X]/G/1 retrial queue with non-preemptive priority. Asia-Pacific J. Oper. Res. 16, 215–234.

Woodward, M.E., 1994. Communication and Computer Networks: Modelling with Discrete-time Queues. IEEE Computer Society Press, Los Alamitos.

Yang, T., Li, H., 1995. On the steady-state queue size distribution of the discrete-time Geo/G/1 queue with repeated attempts. Queueing Systems 21, 199–215.

Deposited On:25 May 2012 08:24
Last Modified:07 May 2014 17:19

Repository Staff Only: item control page