Complutense University Library

Representation Theorems for Some Operator Ideals

Cobos, Fernando and Resina, Ivam (1989) Representation Theorems for Some Operator Ideals. Journal of the London Mathematical Society. Second Series, 39 (2). pp. 324-334. ISSN 0024-6107

[img] PDF
Restricted to Repository staff only until 2020.

493kB

Official URL: http://jlms.oxfordjournals.org/content/s2-39/2/324.full.pdf+html

View download statistics for this eprint

==>>> Export to other formats

Abstract

We establish representation theorems in terms of finite rank operators for some operator ideals defined by approximation numbers. We also study the stability under tensor product of these ideals.


Item Type:Article
Uncontrolled Keywords:Lorentz-Zygmund ideal; finite quasi-norm; approximation numbers; finite rank operators; tensor norms; tensor stability
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:15387
References:

M. S. BRODSKH, I. C. GOHBERG, M. G. KREIN and V. I. MACAEV, 'Some investigations in the theory of non selfadjoint operators', Amer. Math. Soc. Translations (2) 65 (1967) 237-251.

B. CARL, ' Entropy numbers, ^-numbers, and eigenvalues problems', /. Fund. Anal. 41 (1981) 290-306.

B. CARL and I. STEPHANI, 'On A-compact operators, generalized entropy numbers and entropy ideals', Math. Nachr. 119 (1984) 77-95.

B. CARL and I. STEPHANI, 'Estimating compactness properties of operators by the aid of generalized entropy numbers', J. Reine Angew. Math. 350 (1984) 117-136.

F. COBOS, 'On the Lorentz-Marcinkiewicz operator ideal', Math. Nachr. 126 (1986) 281-300.

F. COBOS, 'Entropy and Lorentz-Marcinkiewicz operator ideals', Ark. Mat. 25 (1987) 211-219.

I. C. GOHBERG and M. G. KREIN, 'On the theory of triangular representations of non-selfadjoint operators', Soviet Math. Dokl. 2 (1961) 392-396.

I. C. GOHBERG and M. G. KREIN, Introduction to the theory of linear non-selfadjoint operators (American Mathematical Society, Providence, 1969).

H. KONIG, 'On the tensor stability of s-numbers ideals', Math. Ann. 269 (1984) 77-93.

H. KONIG, Eigenvalue distribution of compact operators (Birkhauser, Basel, 1986).

G. KOTHE, Topological vector spaces, Vols. I, II (Springer, New York, 1969/79).

V. I. MACAEV, 'A class of completely continuous operators', Soviet Math. Dokl. 2 (1961) 972-975.

A. PIETSCH, 'Factorization theorems for some scales of operator ideals', Math. Nachr. 97 (1980) 15-19.

A. PIETSCH, Operator ideals (North-Holland, Amsterdam, 1980).

A. PIETSCH, 'Approximation spaces', J. Approx. Theory 32 (1981) 115-134.

A. PIETSCH, 'Tensor products of sequences, functions and operators', Arch. Math. (Basel) 38 (1982) 335-344.

A. PIETSCH, Eigenvalues and s-numbers (University Press, Cambridge, 1987).

Deposited On:28 May 2012 08:58
Last Modified:06 Feb 2014 10:23

Repository Staff Only: item control page