Complutense University Library

Lorentz-Schatten classes and pointwise domination of matrices


Cobos, Fernando and Kühn, Thomas (1999) Lorentz-Schatten classes and pointwise domination of matrices. Canadian Mathematical Bulletin, 42 (2). pp. 162-168. ISSN 0008-4395

[img] PDF
Restringido a Repository staff only hasta 2020.


Official URL:


We investigate pointwise domination property in operator spaces generated by Lorentz sequence spaces

Item Type:Article
Uncontrolled Keywords:Domination property; Lorentz sequence space; Lorentz-Schatten classes; singular numbers
Subjects:Sciences > Mathematics > Functional analysis and Operator theory
ID Code:15389

R. P. Boas, Majorant problems for trigonometric series. J. Anal. Math. 10(1962/63), 253–271.

F. Cobos and T. Kühn, On a conjecture of Barry Simon on trace ideals. Duke Math. J. 59(1989), 295–299.

A. Córdoba, A counterexample in operator theory. Publ.Mat. 37(1993), 335–338.

M. Déchamps-Gondim, F. Lust-Picard and H. Queffelec, La proprieté du minorant dans C'(H). C. R. Acad. Sci. Paris, S´er. I 295(1982), 657–659.

-On the minorant properties in Cp(H). Pacific J. Math. 119(1985), 89–101.

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math.Soc., Providence, RI, 1969.

H. König, Eigenvalue Distribution of Compact Operators. Birkhäuser, Basel, 1986.

V. V. Peller, Hankel operators of class Sp and their applications (rational approximation, Gaussian processes, the problem of majorizing operators). Math. USSR-Sb. 4 (1982), 443–479.

A. Pietsch, Eigenvalues and s-numbers. Cambridge University Press, Cambridge, 1987.

B. Simon, Trace Ideals and Their Applications. Cambridge University Press, Cambridge, 1979.

- Pointwise domination of matrices and comparison of Sp norms. Pacific J. Math. 97(1981), 471–475.

Deposited On:28 May 2012 09:05
Last Modified:06 Feb 2014 10:23

Repository Staff Only: item control page