Biblioteca de la Universidad Complutense de Madrid

Vanishing theorems and syzygies for K3 surfaces and Fano varieties.

Impacto

Gallego Rodrigo, Francisco Javier y Purnaprajna, Bangere P. (2000) Vanishing theorems and syzygies for K3 surfaces and Fano varieties. Journal of Pure and Applied Algebra , 146 (3). pp. 251-265. ISSN 0022-4049

[img] PDF
Restringido a Sólo personal autorizado del repositorio hasta 2020.

117kB

URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022404998000978




Resumen

In this article we prove results concerning the vanishing of Koszul cohomology groups on K3 surfaces and n-dimensional Fano varieties of index n - 2. As an application of these vanishings we obtain results on projective normality and syzygies for K3 surfaces and Fano varieties.


Tipo de documento:Artículo
Palabras clave:Vanishing theorems; Syzygies; K3 surface; Fano n-folds; Line bundle
Materias:Ciencias > Matemáticas > Geometria algebraica
Código ID:15413
Referencias:

D. Butler, Normal generation of vector bundles over a curve, J. Dierential Geometry 39 (1994) 1{34.

L. Ein, R. Lazarsfeld, Koszul cohomology and syzygies of projective varieties, Inv. Math. 111 (1993)51{ 67.

F. Gallego, B.P. Purnaprajna, Projective normality and syzygies of algebraic surfaces, J. Reine Angew.Math.,to appear.

M. Green, Koszul cohomology and the geometry of projective varieties, J. Dierential Geometry 19 (1984) 125{171.

V.A. Iskovskih, Fano 3-folds I, Math. USSR Izvestija 11(1977) 485{528.

V.A. Iskovskih, Fano 3-folds II, Math. USSR Izvestija 12 (1978) 469{506.

A. Mayer, Families of K-3 surfaces, Nagoya Math. J. 48 (1972) 1{17.

Y. Miyaoka, The Chern class and Kodaira dimension of a minimal variety, in: Algebraic Geometry, Sendai, 1985, Adv. Studies in Pure Math., vol 10, pp. 449{476.

K. Paranjape, S. Ramanan, On the canonical ring of a curve, in: Algebraic Geometry and Commutative Algebra in Honor of Nagata, vol 2, pp. 503{516.

G. Pareschi, B.P. Purnaprajna, Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math. 41 (1997) 266-271.

B. Saint-Donat, On projective models of K3 surfaces, Amer. J. Math. 96 (1974) 602{ 639.

C.S. Seshadri, Vector bundles on curves, in: Linear Algebraic Groups and Their Representations, Los Angeles, 1992, Contemporary Math., vol. 153, American Mathematical Society, Providence, RI, 1993,pp. 163{200.

Depositado:30 May 2012 08:46
Última Modificación:06 Feb 2014 10:24

Sólo personal del repositorio: página de control del artículo